利用机器学习评估植物叶片健康状况的图像处理方法的见解

Harsha Raju, Veena Kalludi Narasimhaiah
{"title":"利用机器学习评估植物叶片健康状况的图像处理方法的见解","authors":"Harsha Raju, Veena Kalludi Narasimhaiah","doi":"10.11591/ijai.v12.i2.pp884-891","DOIUrl":null,"url":null,"abstract":"With the advancement of digital image processing in agriculture and crop cultivation, imaging techniques are adopted to acquire real-time health status. Out of all the parts of plants, the leaf is the direct indicator of its health status, and hence applying various image processing approaches could benefit the process of yielding informative cases of plant health. At present, there are various approaches, e.g., feature extraction, segmentation, identification, the classification being evolved up with more dependencies being found in using machine learning; the studies show many contributions towards this challenge. However, it is not yet conclusive to understand the optimal approach. Hence, this paper highlights an explicit strength and weakness associated with the existing approaches existing imaging processing techniques to identify the disease condition from an input of plant leaves' image. The study also contributes to highlighting open-end research problems to have conclusive remarks about effectiveness. ","PeriodicalId":52221,"journal":{"name":"IAES International Journal of Artificial Intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Insights on assessing image processing approaches towards health status of plant leaf using machine learning\",\"authors\":\"Harsha Raju, Veena Kalludi Narasimhaiah\",\"doi\":\"10.11591/ijai.v12.i2.pp884-891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of digital image processing in agriculture and crop cultivation, imaging techniques are adopted to acquire real-time health status. Out of all the parts of plants, the leaf is the direct indicator of its health status, and hence applying various image processing approaches could benefit the process of yielding informative cases of plant health. At present, there are various approaches, e.g., feature extraction, segmentation, identification, the classification being evolved up with more dependencies being found in using machine learning; the studies show many contributions towards this challenge. However, it is not yet conclusive to understand the optimal approach. Hence, this paper highlights an explicit strength and weakness associated with the existing approaches existing imaging processing techniques to identify the disease condition from an input of plant leaves' image. The study also contributes to highlighting open-end research problems to have conclusive remarks about effectiveness. \",\"PeriodicalId\":52221,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v12.i2.pp884-891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v12.i2.pp884-891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

随着数字图像处理在农业和作物种植中的进步,成像技术被用于实时获取健康状况。在植物的所有部分中,叶子是其健康状况的直接指标,因此应用各种图像处理方法可以有利于产生植物健康的信息案例。目前,有各种方法,例如,特征提取、分割、识别,在使用机器学习的过程中,随着更多的依赖性,分类正在发展;这些研究表明,对这一挑战有许多贡献。然而,对最佳方法的理解还没有定论。因此,本文强调了与现有方法相关的明显优势和劣势,现有的成像处理技术可以从植物叶片图像的输入中识别疾病状况。该研究也有助于突出开放式研究的问题,从而对有效性做出结论性评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights on assessing image processing approaches towards health status of plant leaf using machine learning
With the advancement of digital image processing in agriculture and crop cultivation, imaging techniques are adopted to acquire real-time health status. Out of all the parts of plants, the leaf is the direct indicator of its health status, and hence applying various image processing approaches could benefit the process of yielding informative cases of plant health. At present, there are various approaches, e.g., feature extraction, segmentation, identification, the classification being evolved up with more dependencies being found in using machine learning; the studies show many contributions towards this challenge. However, it is not yet conclusive to understand the optimal approach. Hence, this paper highlights an explicit strength and weakness associated with the existing approaches existing imaging processing techniques to identify the disease condition from an input of plant leaves' image. The study also contributes to highlighting open-end research problems to have conclusive remarks about effectiveness. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IAES International Journal of Artificial Intelligence
IAES International Journal of Artificial Intelligence Decision Sciences-Information Systems and Management
CiteScore
3.90
自引率
0.00%
发文量
170
期刊最新文献
Traffic light counter detection comparison using you only look oncev3 and you only look oncev5 for version 3 and 5 Eligibility of village fund direct cash assistance recipients using artificial neural network Reducing the time needed to solve a traveling salesman problem by clustering with a Hierarchy-based algorithm Glove based wearable devices for sign language-GloSign Hybrid travel time estimation model for public transit buses using limited datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1