gestools:R中的通用G-估计

Daniel Tompsett, S. Vansteelandt, O. Dukes, B. D. De Stavola
{"title":"gestools:R中的通用G-估计","authors":"Daniel Tompsett, S. Vansteelandt, O. Dukes, B. D. De Stavola","doi":"10.1353/obs.2022.0003","DOIUrl":null,"url":null,"abstract":"Abstract:In this paper we present gesttools, a series of general purpose, user friendly functions with which to perform g-estimation of structural nested mean models (SNMMs) for time-varying exposures and outcomes in R. The package implements the g-estimation methods found in Vansteelandt and Sjolander (2016) and Dukes and Vansteelandt (2018), and is capable of analysing both end of study and time-varying outcome data that are either binary or continuous, or exposure variables that are either binary, continuous, or categorical. It also allows for the fitting of SNMMs with time-varying causal effects, effect modification by other variables, or both, as well as support for censored data using inverse weighting. We outline the theory underpinning these methods, as well as describing the SNMMs that can be fitted by the software. The package is demonstrated using simulated, and real-world inspired datasets.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"gesttools: General Purpose G-Estimation in R\",\"authors\":\"Daniel Tompsett, S. Vansteelandt, O. Dukes, B. D. De Stavola\",\"doi\":\"10.1353/obs.2022.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract:In this paper we present gesttools, a series of general purpose, user friendly functions with which to perform g-estimation of structural nested mean models (SNMMs) for time-varying exposures and outcomes in R. The package implements the g-estimation methods found in Vansteelandt and Sjolander (2016) and Dukes and Vansteelandt (2018), and is capable of analysing both end of study and time-varying outcome data that are either binary or continuous, or exposure variables that are either binary, continuous, or categorical. It also allows for the fitting of SNMMs with time-varying causal effects, effect modification by other variables, or both, as well as support for censored data using inverse weighting. We outline the theory underpinning these methods, as well as describing the SNMMs that can be fitted by the software. The package is demonstrated using simulated, and real-world inspired datasets.\",\"PeriodicalId\":74335,\"journal\":{\"name\":\"Observational studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Observational studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/obs.2022.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2022.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:在本文中,我们提出了gesttools,这是一系列通用的、用户友好的函数,用于对r中的时变暴露和结果执行结构嵌套均值模型(SNMMs)的g估计。该软件包实现了Vansteelandt和Sjolander(2016)以及Dukes和Vansteelandt(2018)中发现的g估计方法,能够分析研究结束和时变结果数据,无论是二进制的还是连续的。或者是二元、连续或分类的曝光变量。它还允许snmm与时变因果效应的拟合,其他变量的影响修正,或两者兼而有之,以及使用逆加权支持审查数据。我们概述了支撑这些方法的理论,并描述了可以由软件拟合的snmm。该软件包使用模拟和现实世界的启发数据集进行演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gesttools: General Purpose G-Estimation in R
Abstract:In this paper we present gesttools, a series of general purpose, user friendly functions with which to perform g-estimation of structural nested mean models (SNMMs) for time-varying exposures and outcomes in R. The package implements the g-estimation methods found in Vansteelandt and Sjolander (2016) and Dukes and Vansteelandt (2018), and is capable of analysing both end of study and time-varying outcome data that are either binary or continuous, or exposure variables that are either binary, continuous, or categorical. It also allows for the fitting of SNMMs with time-varying causal effects, effect modification by other variables, or both, as well as support for censored data using inverse weighting. We outline the theory underpinning these methods, as well as describing the SNMMs that can be fitted by the software. The package is demonstrated using simulated, and real-world inspired datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Does matching introduce confounding or selection bias into the matched case-control design? Size-biased sensitivity analysis for matched pairs design to assess the impact of healthcare-associated infections A Software Tutorial for Matching in Clustered Observational Studies Using a difference-in-difference control trial to test an intervention aimed at increasing the take-up of a welfare payment in New Zealand Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1