{"title":"早期火星上的大海啸和微生物生命","authors":"H. Veysi","doi":"10.1017/s1473550422000209","DOIUrl":null,"url":null,"abstract":"\n It is currently believed that early Mars had a vast and shallow ocean, and microbial life may have formed in it, albeit for a short geological time. The geological evidence indicates that during the existence of this ocean, large collisions occurred on the surface of Mars, which led to the formation of megatsunamis in its palaeo-ocean. Previous research has reported on the effects of tsunami waves on microbial ecosystems in the Earth's oceans. This work indicates that tsunami waves can cause changes in the physico-chemical properties of seawater, as well as tsunami-affected land soils. These factors can certainly affect microbial life. Other researchers have shown that there are large microbial communities of marine prokaryotes (bacteria and archaea) in tsunami-induced sediments. These results led us to investigate the impact of tsunami waves on the proposed microbial life in the ancient Martian ocean, and its role in the preservation or non-preservation of Martian microbial life as a fossil signature.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Megatsunamis and microbial life on early Mars\",\"authors\":\"H. Veysi\",\"doi\":\"10.1017/s1473550422000209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n It is currently believed that early Mars had a vast and shallow ocean, and microbial life may have formed in it, albeit for a short geological time. The geological evidence indicates that during the existence of this ocean, large collisions occurred on the surface of Mars, which led to the formation of megatsunamis in its palaeo-ocean. Previous research has reported on the effects of tsunami waves on microbial ecosystems in the Earth's oceans. This work indicates that tsunami waves can cause changes in the physico-chemical properties of seawater, as well as tsunami-affected land soils. These factors can certainly affect microbial life. Other researchers have shown that there are large microbial communities of marine prokaryotes (bacteria and archaea) in tsunami-induced sediments. These results led us to investigate the impact of tsunami waves on the proposed microbial life in the ancient Martian ocean, and its role in the preservation or non-preservation of Martian microbial life as a fossil signature.\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s1473550422000209\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550422000209","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
It is currently believed that early Mars had a vast and shallow ocean, and microbial life may have formed in it, albeit for a short geological time. The geological evidence indicates that during the existence of this ocean, large collisions occurred on the surface of Mars, which led to the formation of megatsunamis in its palaeo-ocean. Previous research has reported on the effects of tsunami waves on microbial ecosystems in the Earth's oceans. This work indicates that tsunami waves can cause changes in the physico-chemical properties of seawater, as well as tsunami-affected land soils. These factors can certainly affect microbial life. Other researchers have shown that there are large microbial communities of marine prokaryotes (bacteria and archaea) in tsunami-induced sediments. These results led us to investigate the impact of tsunami waves on the proposed microbial life in the ancient Martian ocean, and its role in the preservation or non-preservation of Martian microbial life as a fossil signature.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.