{"title":"时间序列图上的变点检测","authors":"K. L. Hallgren, N. Heard, Melissa J. M. Turcotte","doi":"10.1214/23-BA1365","DOIUrl":null,"url":null,"abstract":"When analysing multiple time series that may be subject to changepoints, it is sometimes possible to specify a priori, by means of a graph, which pairs of time series are likely to be impacted by simultaneous changepoints. This article proposes an informative prior for changepoints which encodes the information contained in the graph, inducing a changepoint model for multiple time series that borrows strength across clusters of connected time series to detect weak signals for synchronous changepoints. The graphical model for changepoints is further extended to allow dependence between nearby but not necessarily synchronous changepoints across neighbouring time series in the graph. A novel reversible jump Markov chain Monte Carlo (MCMC) algorithm making use of auxiliary variables is proposed to sample from the graphical changepoint model. The merit of the proposed approach is demonstrated through a changepoint analysis of computer network authentication logs from Los Alamos National Laboratory (LANL), demonstrating an improvement at detecting weak signals for network intrusions across users linked by network connectivity, whilst limiting the number of false alerts.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changepoint Detection on a Graph of Time Series\",\"authors\":\"K. L. Hallgren, N. Heard, Melissa J. M. Turcotte\",\"doi\":\"10.1214/23-BA1365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When analysing multiple time series that may be subject to changepoints, it is sometimes possible to specify a priori, by means of a graph, which pairs of time series are likely to be impacted by simultaneous changepoints. This article proposes an informative prior for changepoints which encodes the information contained in the graph, inducing a changepoint model for multiple time series that borrows strength across clusters of connected time series to detect weak signals for synchronous changepoints. The graphical model for changepoints is further extended to allow dependence between nearby but not necessarily synchronous changepoints across neighbouring time series in the graph. A novel reversible jump Markov chain Monte Carlo (MCMC) algorithm making use of auxiliary variables is proposed to sample from the graphical changepoint model. The merit of the proposed approach is demonstrated through a changepoint analysis of computer network authentication logs from Los Alamos National Laboratory (LANL), demonstrating an improvement at detecting weak signals for network intrusions across users linked by network connectivity, whilst limiting the number of false alerts.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-BA1365\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-BA1365","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
When analysing multiple time series that may be subject to changepoints, it is sometimes possible to specify a priori, by means of a graph, which pairs of time series are likely to be impacted by simultaneous changepoints. This article proposes an informative prior for changepoints which encodes the information contained in the graph, inducing a changepoint model for multiple time series that borrows strength across clusters of connected time series to detect weak signals for synchronous changepoints. The graphical model for changepoints is further extended to allow dependence between nearby but not necessarily synchronous changepoints across neighbouring time series in the graph. A novel reversible jump Markov chain Monte Carlo (MCMC) algorithm making use of auxiliary variables is proposed to sample from the graphical changepoint model. The merit of the proposed approach is demonstrated through a changepoint analysis of computer network authentication logs from Los Alamos National Laboratory (LANL), demonstrating an improvement at detecting weak signals for network intrusions across users linked by network connectivity, whilst limiting the number of false alerts.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.