Thijmen van Alphen, S. Jak, Joost Jansen in de Wal, J. Schuitema, T. Peetsma
{"title":"确定日常测量的可靠性:以教师压力数据为例","authors":"Thijmen van Alphen, S. Jak, Joost Jansen in de Wal, J. Schuitema, T. Peetsma","doi":"10.1080/08957347.2022.2034822","DOIUrl":null,"url":null,"abstract":"ABSTRACT Intensive longitudinal data is increasingly used to study state-like processes such as changes in daily stress. Measures aimed at collecting such data require the same level of scrutiny regarding scale reliability as traditional questionnaires. The most prevalent methods used to assess reliability of intensive longitudinal measures are based on the generalizability theory or a multilevel factor analytic approach. However, the application of recent improvements made for the factor analytic approach may not be readily applicable for all researchers. Therefore, this article illustrates a five-step approach for determining reliability of daily data, which is one type of intensive longitudinal data. First, we show how the proposed reliability equations are applied. Next, we illustrate how these equations are used as part of our five-step approach with empirical data, originating from a study investigating changes in daily stress of secondary school teachers. The results are a within-level (ωw), between-level (ωb) reliability score. Mplus syntax for these examples is included and discussed. As such, this paper anticipates on the need for comprehensive guides for the analysis of daily data.","PeriodicalId":51609,"journal":{"name":"Applied Measurement in Education","volume":"35 1","pages":"63 - 79"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determining Reliability of Daily Measures: An Illustration with Data on Teacher Stress\",\"authors\":\"Thijmen van Alphen, S. Jak, Joost Jansen in de Wal, J. Schuitema, T. Peetsma\",\"doi\":\"10.1080/08957347.2022.2034822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Intensive longitudinal data is increasingly used to study state-like processes such as changes in daily stress. Measures aimed at collecting such data require the same level of scrutiny regarding scale reliability as traditional questionnaires. The most prevalent methods used to assess reliability of intensive longitudinal measures are based on the generalizability theory or a multilevel factor analytic approach. However, the application of recent improvements made for the factor analytic approach may not be readily applicable for all researchers. Therefore, this article illustrates a five-step approach for determining reliability of daily data, which is one type of intensive longitudinal data. First, we show how the proposed reliability equations are applied. Next, we illustrate how these equations are used as part of our five-step approach with empirical data, originating from a study investigating changes in daily stress of secondary school teachers. The results are a within-level (ωw), between-level (ωb) reliability score. Mplus syntax for these examples is included and discussed. As such, this paper anticipates on the need for comprehensive guides for the analysis of daily data.\",\"PeriodicalId\":51609,\"journal\":{\"name\":\"Applied Measurement in Education\",\"volume\":\"35 1\",\"pages\":\"63 - 79\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Measurement in Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1080/08957347.2022.2034822\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Measurement in Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1080/08957347.2022.2034822","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Determining Reliability of Daily Measures: An Illustration with Data on Teacher Stress
ABSTRACT Intensive longitudinal data is increasingly used to study state-like processes such as changes in daily stress. Measures aimed at collecting such data require the same level of scrutiny regarding scale reliability as traditional questionnaires. The most prevalent methods used to assess reliability of intensive longitudinal measures are based on the generalizability theory or a multilevel factor analytic approach. However, the application of recent improvements made for the factor analytic approach may not be readily applicable for all researchers. Therefore, this article illustrates a five-step approach for determining reliability of daily data, which is one type of intensive longitudinal data. First, we show how the proposed reliability equations are applied. Next, we illustrate how these equations are used as part of our five-step approach with empirical data, originating from a study investigating changes in daily stress of secondary school teachers. The results are a within-level (ωw), between-level (ωb) reliability score. Mplus syntax for these examples is included and discussed. As such, this paper anticipates on the need for comprehensive guides for the analysis of daily data.
期刊介绍:
Because interaction between the domains of research and application is critical to the evaluation and improvement of new educational measurement practices, Applied Measurement in Education" prime objective is to improve communication between academicians and practitioners. To help bridge the gap between theory and practice, articles in this journal describe original research studies, innovative strategies for solving educational measurement problems, and integrative reviews of current approaches to contemporary measurement issues. Peer Review Policy: All review papers in this journal have undergone editorial screening and peer review.