R. Isnanto, A. F. Rochim, D. Eridani, Guntur Cahyono
{"title":"基于局部二值模式直方图和Haar级联分类器的低分辨率图像多目标人脸识别","authors":"R. Isnanto, A. F. Rochim, D. Eridani, Guntur Cahyono","doi":"10.46604/IJETI.2021.6174","DOIUrl":null,"url":null,"abstract":"This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the realtime data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"11 1","pages":"45-58"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images\",\"authors\":\"R. Isnanto, A. F. Rochim, D. Eridani, Guntur Cahyono\",\"doi\":\"10.46604/IJETI.2021.6174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the realtime data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"11 1\",\"pages\":\"45-58\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/IJETI.2021.6174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/IJETI.2021.6174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Object Face Recognition Using Local Binary Pattern Histogram and Haar Cascade Classifier on Low-Resolution Images
This study aims to build a face recognition prototype that can recognize multiple face objects within one frame. The proposed method uses a local binary pattern histogram and Haar cascade classifier on low-resolution images. The lowest data resolution used in this study was 76 × 76 pixels and the highest was 156 × 156 pixels. The face images were preprocessed using the histogram equalization and median filtering. The face recognition prototype proposed successfully recognized four face objects in one frame. The results obtained were comparable for local and real-time stream video data for testing. The RR obtained with the local data test was 99.67%, which indicates better performance in recognizing 75 frames for each object, compared to the 92.67% RR for the realtime data stream. In comparison to the results obtained in previous works, it can be concluded that the proposed method yields the highest RR of 99.67%.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.