{"title":"L1和L5 GPS智能手机绝对定位结果的比较","authors":"M. Uradziński, M. Bakuła","doi":"10.1515/jag-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents the analysis of single-point GPS positioning results obtained from smartphones, using code observations on the L1 and L5 frequencies. In this research we used two Huawei P30 Pro mobile phones and one geodetic receiver (Javad Alpha) acting as the reference receiver. Smartphones were placed at an equal distance of 0.5 m from this receiver. Such a close distance was specially planned by the authors in order to achieve identical observation conditions. Thus, it was possible to compare the accuracy of GPS positioning using pseudoranges on the L1 and L5 frequencies for individual observation epochs. The analysis was carried out from static GPS positioning, using the results from the open-source RTKLib software. In general, the usefulness of code measurements on the L5 frequency to determine the GPS position made it possible to increase the accuracy by several times with respect to the positions determined using the C/A code on the L1 frequency. Average errors of horizontal and vertical coordinates were about 70 % lower for the GPS solution using the L5 code observations than using the L1 code observations. Based on statistical analysis, a horizontal accuracy of about 0.45 m and vertical accuracy of about 1.8 m (STDEV) with only five GPS satellites may be obtained using a smartphone with L5 code observations.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of L1 and L5 GPS smartphone absolute positioning results\",\"authors\":\"M. Uradziński, M. Bakuła\",\"doi\":\"10.1515/jag-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper presents the analysis of single-point GPS positioning results obtained from smartphones, using code observations on the L1 and L5 frequencies. In this research we used two Huawei P30 Pro mobile phones and one geodetic receiver (Javad Alpha) acting as the reference receiver. Smartphones were placed at an equal distance of 0.5 m from this receiver. Such a close distance was specially planned by the authors in order to achieve identical observation conditions. Thus, it was possible to compare the accuracy of GPS positioning using pseudoranges on the L1 and L5 frequencies for individual observation epochs. The analysis was carried out from static GPS positioning, using the results from the open-source RTKLib software. In general, the usefulness of code measurements on the L5 frequency to determine the GPS position made it possible to increase the accuracy by several times with respect to the positions determined using the C/A code on the L1 frequency. Average errors of horizontal and vertical coordinates were about 70 % lower for the GPS solution using the L5 code observations than using the L1 code observations. Based on statistical analysis, a horizontal accuracy of about 0.45 m and vertical accuracy of about 1.8 m (STDEV) with only five GPS satellites may be obtained using a smartphone with L5 code observations.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
摘要
本文对智能手机单点GPS定位结果进行了分析,利用L1和L5频率上的代码观测。在本研究中,我们使用两台华为P30 Pro手机和一台大地测量接收机(Javad Alpha)作为参考接收机。智能手机与接收器的距离为0.5 m。如此近的距离是作者为了达到相同的观测条件而特别规划的。因此,可以在单个观测历元的L1和L5频率上使用伪距来比较GPS定位的精度。利用开源RTKLib软件的结果,从静态GPS定位进行分析。一般来说,在L5频率上的代码测量对确定GPS位置的有用性使得相对于在L1频率上使用C/A代码确定的位置,可以将精度提高几倍。使用L5码观测的GPS解的水平坐标和垂直坐标的平均误差比使用L1码观测的GPS解的水平坐标和垂直坐标的平均误差低约70 %。基于统计分析,仅使用5颗GPS卫星,在智能手机上使用L5码观测可获得水平精度约为0.45 m,垂直精度约为1.8 m (STDEV)。
Comparison of L1 and L5 GPS smartphone absolute positioning results
Abstract The paper presents the analysis of single-point GPS positioning results obtained from smartphones, using code observations on the L1 and L5 frequencies. In this research we used two Huawei P30 Pro mobile phones and one geodetic receiver (Javad Alpha) acting as the reference receiver. Smartphones were placed at an equal distance of 0.5 m from this receiver. Such a close distance was specially planned by the authors in order to achieve identical observation conditions. Thus, it was possible to compare the accuracy of GPS positioning using pseudoranges on the L1 and L5 frequencies for individual observation epochs. The analysis was carried out from static GPS positioning, using the results from the open-source RTKLib software. In general, the usefulness of code measurements on the L5 frequency to determine the GPS position made it possible to increase the accuracy by several times with respect to the positions determined using the C/A code on the L1 frequency. Average errors of horizontal and vertical coordinates were about 70 % lower for the GPS solution using the L5 code observations than using the L1 code observations. Based on statistical analysis, a horizontal accuracy of about 0.45 m and vertical accuracy of about 1.8 m (STDEV) with only five GPS satellites may be obtained using a smartphone with L5 code observations.