mPEG-PCL共聚物作为依那普利模型亲水药物递送聚合物的合成与表征

Q4 Pharmacology, Toxicology and Pharmaceutics Iranian Journal of Pharmaceutical Sciences Pub Date : 2018-04-01 DOI:10.22034/IJPS.2018.33691
H. Danafar
{"title":"mPEG-PCL共聚物作为依那普利模型亲水药物递送聚合物的合成与表征","authors":"H. Danafar","doi":"10.22034/IJPS.2018.33691","DOIUrl":null,"url":null,"abstract":"Purpose: Enalapril maleate (EPM), was used for hypertension and congestive heart failure. In this way, an innovative delivery system with mPEG–PCL was synthesized and the release profile of the EPM from the drug-loaded polymersomes was evaluated. Methods: Di-block methoxy)-poly (ethylene glycol) - Poly (caprolactone) (mPEG-PCL) copolymers were synthesized and used to prepare of polymersomes for controlled release of EPM as hydrophilic model drug. MPEG-PCL copolymer was characterized in vitro by HNMR, FTIR, DSC and GPC techniques. The resulting polymersomes were characterized further by various techniques such as dynamic light scattering (DLS) and transmission electron microscopy (TEM). Results: The results of TEM shows the polymersomes formed had spherical structure and the size of nanoparticles is 80 nm. The loading and encapsulation efficiency of EPM were determinate by HPLC at 215 nm with loading and encapsulation efficiency 19.8% ± 2.12% and 85.6% ± 1.26%, respectively. Study on DSC results exposed strong interaction between EPM and copolymer. In vitro release of EPM from polymersomes was clearly sustained in all the time tested for this purpose. The sustained release of drug was hypothetically due to the entrapment of EPM in core of polymersomes. Polymersomes also showed acceptable stability for long periods of time. Conclusion: The results indicate the successful formulation of EPM loaded m-PEG/PCL polymersomes. Overall, the results was showed that m-PEG-PCL polymersomes can be considered as a promising carrier for hydrophilic drugs such as EPM.","PeriodicalId":14582,"journal":{"name":"Iranian Journal of Pharmaceutical Sciences","volume":"14 1","pages":"25-38"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthesis and characterization of mPEG-PCL copolymers as a polymersomes for delivery of enalapril as a model hydrophilic drug\",\"authors\":\"H. Danafar\",\"doi\":\"10.22034/IJPS.2018.33691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: Enalapril maleate (EPM), was used for hypertension and congestive heart failure. In this way, an innovative delivery system with mPEG–PCL was synthesized and the release profile of the EPM from the drug-loaded polymersomes was evaluated. Methods: Di-block methoxy)-poly (ethylene glycol) - Poly (caprolactone) (mPEG-PCL) copolymers were synthesized and used to prepare of polymersomes for controlled release of EPM as hydrophilic model drug. MPEG-PCL copolymer was characterized in vitro by HNMR, FTIR, DSC and GPC techniques. The resulting polymersomes were characterized further by various techniques such as dynamic light scattering (DLS) and transmission electron microscopy (TEM). Results: The results of TEM shows the polymersomes formed had spherical structure and the size of nanoparticles is 80 nm. The loading and encapsulation efficiency of EPM were determinate by HPLC at 215 nm with loading and encapsulation efficiency 19.8% ± 2.12% and 85.6% ± 1.26%, respectively. Study on DSC results exposed strong interaction between EPM and copolymer. In vitro release of EPM from polymersomes was clearly sustained in all the time tested for this purpose. The sustained release of drug was hypothetically due to the entrapment of EPM in core of polymersomes. Polymersomes also showed acceptable stability for long periods of time. Conclusion: The results indicate the successful formulation of EPM loaded m-PEG/PCL polymersomes. Overall, the results was showed that m-PEG-PCL polymersomes can be considered as a promising carrier for hydrophilic drugs such as EPM.\",\"PeriodicalId\":14582,\"journal\":{\"name\":\"Iranian Journal of Pharmaceutical Sciences\",\"volume\":\"14 1\",\"pages\":\"25-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/IJPS.2018.33691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IJPS.2018.33691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 2

摘要

目的:马来酸依那普利(EPM)用于治疗高血压和充血性心力衰竭。通过这种方式,合成了一种具有mPEG–PCL的创新递送系统,并评估了EPM从药物负载的多聚体中的释放特性。方法:合成二嵌段甲氧基-聚乙二醇-聚己内酯(mPEG-PCL)共聚物,并将其用于制备EPM作为亲水性模型药物的控释聚合物。采用HNMR、FTIR、DSC和GPC等技术对MPEG-PCL共聚物进行了体外表征。通过诸如动态光散射(DLS)和透射电子显微镜(TEM)的各种技术进一步表征所得到的多聚体。结果:TEM结果表明,所形成的多聚体具有球形结构,纳米颗粒的尺寸为80nm。用高效液相色谱法在215nm处测定了EPM的负载量和包封率,负载量和包封率分别为19.8%±2.12%和85.6%±1.26%。DSC结果表明,EPM和共聚物之间存在强烈的相互作用。EPM从多聚体的体外释放在为此目的测试的所有时间内都明显持续。假设药物的持续释放是由于EPM包埋在多聚体的核心中。多聚体在长时间内也显示出可接受的稳定性。结论:实验结果表明,制备的间-PEG/PCL多聚体是成功的。总之,结果表明,m-PEG-PCL多聚体可以被认为是一种很有前途的亲水性药物载体,如EPM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of mPEG-PCL copolymers as a polymersomes for delivery of enalapril as a model hydrophilic drug
Purpose: Enalapril maleate (EPM), was used for hypertension and congestive heart failure. In this way, an innovative delivery system with mPEG–PCL was synthesized and the release profile of the EPM from the drug-loaded polymersomes was evaluated. Methods: Di-block methoxy)-poly (ethylene glycol) - Poly (caprolactone) (mPEG-PCL) copolymers were synthesized and used to prepare of polymersomes for controlled release of EPM as hydrophilic model drug. MPEG-PCL copolymer was characterized in vitro by HNMR, FTIR, DSC and GPC techniques. The resulting polymersomes were characterized further by various techniques such as dynamic light scattering (DLS) and transmission electron microscopy (TEM). Results: The results of TEM shows the polymersomes formed had spherical structure and the size of nanoparticles is 80 nm. The loading and encapsulation efficiency of EPM were determinate by HPLC at 215 nm with loading and encapsulation efficiency 19.8% ± 2.12% and 85.6% ± 1.26%, respectively. Study on DSC results exposed strong interaction between EPM and copolymer. In vitro release of EPM from polymersomes was clearly sustained in all the time tested for this purpose. The sustained release of drug was hypothetically due to the entrapment of EPM in core of polymersomes. Polymersomes also showed acceptable stability for long periods of time. Conclusion: The results indicate the successful formulation of EPM loaded m-PEG/PCL polymersomes. Overall, the results was showed that m-PEG-PCL polymersomes can be considered as a promising carrier for hydrophilic drugs such as EPM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Pharmaceutical Sciences
Iranian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: Iranian Journal of Pharmaceutical Sciences (IJPS) is an open access, internationally peer-reviewed journal that seeks to publish research articles in different pharmaceutical sciences subdivisions: pharmacology and toxicology, nanotechnology, pharmaceutics, natural products, biotechnology, pharmaceutical chemistry, clinical pharmacy and other pharmacy related topics. Each issue of the journal contents 16 outstanding research articles in area of pharmaceutical sciences plus an editorial written by the IJPS editors on one of the most up to date advances topics in pharmacy. All articles published by IJPS would be permanently accessible online freely without any subscription charges. Authors of the published articles have granted the right to use and disseminate their article to third parties.
期刊最新文献
Cytotoxic effect of Tilia dasystyla and Polygonatum orientale Desf extracts on AGS and SKOV-3 cancer cell lines Antibacterial Properties and Flavonoids Content of Some Mosses Common in Armenia Formulation, characterization and evaluation to establish the bioavailability of gastroretentive mucoadhesive dosage of atenolol in human subjects with possible in-vitro-in-vivo correlation Persicoimidate isolated from Allium ampeloprasum Subsp. Persicum with Apoptotic effects against Breast cancer cell lines Information Sharing and Information Quality in the Drugs and Medical Consumables Supply Chain Management (SCM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1