基于yolov5融合注意机制的梨花序识别研究

IF 0.6 Q4 AGRICULTURAL ENGINEERING INMATEH-Agricultural Engineering Pub Date : 2023-04-30 DOI:10.35633/inmateh-69-01
Ye Xia, Xiaohui Lei, A. Herbst, Xiaolan Lyu
{"title":"基于yolov5融合注意机制的梨花序识别研究","authors":"Ye Xia, Xiaohui Lei, A. Herbst, Xiaolan Lyu","doi":"10.35633/inmateh-69-01","DOIUrl":null,"url":null,"abstract":"Thinning is an important agronomic process in pear production, thus the detection of pear inflorescence is an important technology for intelligentization of blossom thinning. In this paper, images of buds and flowers were collected under different natural conditions for model training, and the images were augmented by data augmentation methods. Model training was performed based on the YOLOv5s network with coordinate attention mechanism added to the backbone network and compared with the native YOLOv5s, YOLOv3, SSD 300, and Faster-RCNN algorithms. The mAP, F1 score and recall of the algorithm reached 93.32%, 91.10%, and 91.99%. The model size only took up 14.1 MB, and the average detection time was 27 ms, which are suitable for application in actual intelligent blossom thinning equipment.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REASEARCH ON PEAR INFLORESCENCE RECOGNITION BASED ON FUSION ATTENTION MECHANISM WITH YOLOV5\",\"authors\":\"Ye Xia, Xiaohui Lei, A. Herbst, Xiaolan Lyu\",\"doi\":\"10.35633/inmateh-69-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thinning is an important agronomic process in pear production, thus the detection of pear inflorescence is an important technology for intelligentization of blossom thinning. In this paper, images of buds and flowers were collected under different natural conditions for model training, and the images were augmented by data augmentation methods. Model training was performed based on the YOLOv5s network with coordinate attention mechanism added to the backbone network and compared with the native YOLOv5s, YOLOv3, SSD 300, and Faster-RCNN algorithms. The mAP, F1 score and recall of the algorithm reached 93.32%, 91.10%, and 91.99%. The model size only took up 14.1 MB, and the average detection time was 27 ms, which are suitable for application in actual intelligent blossom thinning equipment.\",\"PeriodicalId\":44197,\"journal\":{\"name\":\"INMATEH-Agricultural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INMATEH-Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35633/inmateh-69-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-69-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

疏花是梨生产中的一个重要农艺过程,因此,梨花的花序检测是实现疏花智能化的重要技术。本文采集不同自然条件下的花蕾和花朵图像进行模型训练,并通过数据增强方法对图像进行增强。基于骨干网中加入坐标注意机制的YOLOv5s网络进行模型训练,并与原生的YOLOv5s、YOLOv3、SSD 300和Faster-RCNN算法进行对比。算法的mAP、F1得分和召回率分别达到93.32%、91.10%和91.99%。模型大小仅为14.1 MB,平均检测时间为27 ms,适合在实际智能疏花设备中应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REASEARCH ON PEAR INFLORESCENCE RECOGNITION BASED ON FUSION ATTENTION MECHANISM WITH YOLOV5
Thinning is an important agronomic process in pear production, thus the detection of pear inflorescence is an important technology for intelligentization of blossom thinning. In this paper, images of buds and flowers were collected under different natural conditions for model training, and the images were augmented by data augmentation methods. Model training was performed based on the YOLOv5s network with coordinate attention mechanism added to the backbone network and compared with the native YOLOv5s, YOLOv3, SSD 300, and Faster-RCNN algorithms. The mAP, F1 score and recall of the algorithm reached 93.32%, 91.10%, and 91.99%. The model size only took up 14.1 MB, and the average detection time was 27 ms, which are suitable for application in actual intelligent blossom thinning equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
INMATEH-Agricultural Engineering
INMATEH-Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
1.30
自引率
57.10%
发文量
98
期刊最新文献
TECHNICAL AND ENVIRONMENTAL EVALUATION OF USING RICE HUSKS AND SOLAR ENERGY ON THE ACTIVATION OF ABSORPTION CHILLERS IN THE CARIBBEAN REGION. CASE STUDY: BARRANQUILLA ALGORITHM FOR OPTIMIZING THE MOVEMENT OF A MOUNTED MACHINETRACTOR UNIT IN THE HEADLAND OF AN IRREGULARLY SHAPED FIELD STUDY ON THE INFLUENCE OF PCA PRE-TREATMENT ON PIG FACE IDENTIFICATION WITH KNN IoT-BASED EVAPOTRANSPIRATION ESTIMATION OF PEANUT PLANT USING DEEP NEURAL NETWORK DESIGN AND EXPERIMENT OF A SINGLE-ROW SMALL GRAIN PRECISION SEEDER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1