B. Ojiego, Obianuju P. Ilo, F. Dantanko, Shauibu A. Abdullahi, Ibrahim M. K. Gadzama, P. Bolorunduro, Elijah Ekah Ella, Gideon I Ogu
{"title":"利用本地菌株对尼日利亚固体垃圾场获得的塑料材料进行生物降解","authors":"B. Ojiego, Obianuju P. Ilo, F. Dantanko, Shauibu A. Abdullahi, Ibrahim M. K. Gadzama, P. Bolorunduro, Elijah Ekah Ella, Gideon I Ogu","doi":"10.21608/nrmj.2022.260288","DOIUrl":null,"url":null,"abstract":"Plastic packaging materials constitute a major potential environmental pollutant due to their slow degradation rates. This study aimed to isolate the plastic-degrading bacteria from the solid waste dumpsites of Abuja, Nigeria. Soil samples (n= 72) and plastic materials (bottles and bags) were collected from the dumpsites using soil augers and manual picking, respectively. Bacteriological analysis of the soil samples revealed the recovery of a total of 54 bacterial isolates, which were distributed among the genera of; Proteus sp. (33.3 %), Providencia sp. (29.63 %), Pseudomonas sp. (16.67 %), Bacillus sp. (9.26 %), Micrococcus sp. (5.56 %), Escherichia coli (1.85 %), Enterobacter sp. (1.85 %), and Serratia sp. (1.85 %). The bacterial isolates were inoculated into a series of shake flasks containing nutrient broth and pre-sterilized strips (1×1 cm) of plastic bags (0.05-0.0514 g) and plastic bottles (0.05-0.0529 g), and then incubated at 30 o C for 60 d to monitor their biodegradation using the weight loss method. The strips of bottles (0.58-49.00 %) were more susceptible to biodegradation than the plastic bags (0.78-15.40 %) after 60 d of incubation. The results demonstrated that about 6 of the bacterial isolates belong to the two genera of Proteus sp. and Providencia spp., and were considered the best bio-degraders. Molecular characterization of these potent isolates has identified them as Proteus mirabilis strain PPB3 (49.00 %), Proteus mirabilis strain UPMSD3 (32.07 %), Proteus mirabilis strain HH133 (20.41 %), Proteus mirabilis strain SSBIKEN (15.40 %), Providencia vermicola strain M4 (14.96 %), and Providencia vermicola strain 11 (12.20 %). These strains could be considered as potential biodegradation agents for the plastic materials that are prevalent in dumpsites.","PeriodicalId":34593,"journal":{"name":"Novel Research in Microbiology Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biodegradation of plastic materials obtained from solid waste dumpsites in Nigeria, using native bacterial strains\",\"authors\":\"B. Ojiego, Obianuju P. Ilo, F. Dantanko, Shauibu A. Abdullahi, Ibrahim M. K. Gadzama, P. Bolorunduro, Elijah Ekah Ella, Gideon I Ogu\",\"doi\":\"10.21608/nrmj.2022.260288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic packaging materials constitute a major potential environmental pollutant due to their slow degradation rates. This study aimed to isolate the plastic-degrading bacteria from the solid waste dumpsites of Abuja, Nigeria. Soil samples (n= 72) and plastic materials (bottles and bags) were collected from the dumpsites using soil augers and manual picking, respectively. Bacteriological analysis of the soil samples revealed the recovery of a total of 54 bacterial isolates, which were distributed among the genera of; Proteus sp. (33.3 %), Providencia sp. (29.63 %), Pseudomonas sp. (16.67 %), Bacillus sp. (9.26 %), Micrococcus sp. (5.56 %), Escherichia coli (1.85 %), Enterobacter sp. (1.85 %), and Serratia sp. (1.85 %). The bacterial isolates were inoculated into a series of shake flasks containing nutrient broth and pre-sterilized strips (1×1 cm) of plastic bags (0.05-0.0514 g) and plastic bottles (0.05-0.0529 g), and then incubated at 30 o C for 60 d to monitor their biodegradation using the weight loss method. The strips of bottles (0.58-49.00 %) were more susceptible to biodegradation than the plastic bags (0.78-15.40 %) after 60 d of incubation. The results demonstrated that about 6 of the bacterial isolates belong to the two genera of Proteus sp. and Providencia spp., and were considered the best bio-degraders. Molecular characterization of these potent isolates has identified them as Proteus mirabilis strain PPB3 (49.00 %), Proteus mirabilis strain UPMSD3 (32.07 %), Proteus mirabilis strain HH133 (20.41 %), Proteus mirabilis strain SSBIKEN (15.40 %), Providencia vermicola strain M4 (14.96 %), and Providencia vermicola strain 11 (12.20 %). These strains could be considered as potential biodegradation agents for the plastic materials that are prevalent in dumpsites.\",\"PeriodicalId\":34593,\"journal\":{\"name\":\"Novel Research in Microbiology Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Novel Research in Microbiology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/nrmj.2022.260288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novel Research in Microbiology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/nrmj.2022.260288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Biodegradation of plastic materials obtained from solid waste dumpsites in Nigeria, using native bacterial strains
Plastic packaging materials constitute a major potential environmental pollutant due to their slow degradation rates. This study aimed to isolate the plastic-degrading bacteria from the solid waste dumpsites of Abuja, Nigeria. Soil samples (n= 72) and plastic materials (bottles and bags) were collected from the dumpsites using soil augers and manual picking, respectively. Bacteriological analysis of the soil samples revealed the recovery of a total of 54 bacterial isolates, which were distributed among the genera of; Proteus sp. (33.3 %), Providencia sp. (29.63 %), Pseudomonas sp. (16.67 %), Bacillus sp. (9.26 %), Micrococcus sp. (5.56 %), Escherichia coli (1.85 %), Enterobacter sp. (1.85 %), and Serratia sp. (1.85 %). The bacterial isolates were inoculated into a series of shake flasks containing nutrient broth and pre-sterilized strips (1×1 cm) of plastic bags (0.05-0.0514 g) and plastic bottles (0.05-0.0529 g), and then incubated at 30 o C for 60 d to monitor their biodegradation using the weight loss method. The strips of bottles (0.58-49.00 %) were more susceptible to biodegradation than the plastic bags (0.78-15.40 %) after 60 d of incubation. The results demonstrated that about 6 of the bacterial isolates belong to the two genera of Proteus sp. and Providencia spp., and were considered the best bio-degraders. Molecular characterization of these potent isolates has identified them as Proteus mirabilis strain PPB3 (49.00 %), Proteus mirabilis strain UPMSD3 (32.07 %), Proteus mirabilis strain HH133 (20.41 %), Proteus mirabilis strain SSBIKEN (15.40 %), Providencia vermicola strain M4 (14.96 %), and Providencia vermicola strain 11 (12.20 %). These strains could be considered as potential biodegradation agents for the plastic materials that are prevalent in dumpsites.