基于卷积神经网络的建筑结构损伤检测方法

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL Smart Structures and Systems Pub Date : 2021-06-01 DOI:10.12989/SSS.2021.27.6.903
B. Oh, B. Glisic, H. Park
{"title":"基于卷积神经网络的建筑结构损伤检测方法","authors":"B. Oh, B. Glisic, H. Park","doi":"10.12989/SSS.2021.27.6.903","DOIUrl":null,"url":null,"abstract":"This study presents a damage detection method based on modal responses for building structures using convolutional neural networks (CNNs). The modal responses used in the method are obtained from the dynamic responses, which are measured in a building structure under ambient excitations; these are then transformed to a modal participation ratio (MPR) value for a measuring point and mode. As modal responses vary after damages in the structures, the MPR for a specific location and mode also changes. Thus, in this study, MPR variations, which can be obtained by comparing the MPRs of damaged and healthy structures, are utilized for damage detection without the need for identification of modal parameters. Since MPRs are derived for the number of measuring points (N) in the structure as well as the same number of modes (N), the MPRs and MPR variations can be arranged as an N × N matrix. This low-dimensional MPR variations set is used as the input map of the presented CNN architecture and information about damage locations and severities of the target structure is set as the output of the CNN. The presented CNN is trained for establishing the relationship between MPR variations and damage information and utilized to estimate the damage. The presented damage detection method is applied to numerical examples for two multiple degrees of freedoms and a three-dimensional ASCE benchmark numerical model. Training datasets created from damage scenarios assuming changes in the stiffness are used to train the CNN and the performance of this CNN is verified. Finally, this study examines how variations in the operator size and number of layers in the CNN architecture affect the damage detection performance of CNNs.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional neural network-based damage detection method for building structures\",\"authors\":\"B. Oh, B. Glisic, H. Park\",\"doi\":\"10.12989/SSS.2021.27.6.903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a damage detection method based on modal responses for building structures using convolutional neural networks (CNNs). The modal responses used in the method are obtained from the dynamic responses, which are measured in a building structure under ambient excitations; these are then transformed to a modal participation ratio (MPR) value for a measuring point and mode. As modal responses vary after damages in the structures, the MPR for a specific location and mode also changes. Thus, in this study, MPR variations, which can be obtained by comparing the MPRs of damaged and healthy structures, are utilized for damage detection without the need for identification of modal parameters. Since MPRs are derived for the number of measuring points (N) in the structure as well as the same number of modes (N), the MPRs and MPR variations can be arranged as an N × N matrix. This low-dimensional MPR variations set is used as the input map of the presented CNN architecture and information about damage locations and severities of the target structure is set as the output of the CNN. The presented CNN is trained for establishing the relationship between MPR variations and damage information and utilized to estimate the damage. The presented damage detection method is applied to numerical examples for two multiple degrees of freedoms and a three-dimensional ASCE benchmark numerical model. Training datasets created from damage scenarios assuming changes in the stiffness are used to train the CNN and the performance of this CNN is verified. Finally, this study examines how variations in the operator size and number of layers in the CNN architecture affect the damage detection performance of CNNs.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.27.6.903\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.6.903","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种基于卷积神经网络的建筑结构模态响应损伤检测方法。该方法中使用的模态响应是从建筑结构在环境激励下的动态响应中获得的;然后将其转换为测量点和模式的模式参与比(MPR)值。随着结构损伤后模态响应的变化,特定位置和模式的MPR也会发生变化。因此,在本研究中,可以通过比较受损和健康结构的MPR来获得的MPR变化被用于损伤检测,而不需要识别模态参数。由于MPR是针对结构中测量点的数量(N)以及相同数量的模式(N)导出的,因此MPR和MPR变化可以排列为N×N矩阵。该低维MPR变化集被用作所呈现的CNN架构的输入图,并且关于目标结构的损伤位置和严重程度的信息被设置为CNN的输出。所提出的CNN被训练用于建立MPR变化和损伤信息之间的关系,并用于估计损伤。将所提出的损伤检测方法应用于两个多自由度的数值算例和三维ASCE基准数值模型。使用根据假设刚度变化的损伤场景创建的训练数据集来训练CNN,并验证该CNN的性能。最后,本研究考察了CNN架构中算子大小和层数的变化如何影响CNN的损伤检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional neural network-based damage detection method for building structures
This study presents a damage detection method based on modal responses for building structures using convolutional neural networks (CNNs). The modal responses used in the method are obtained from the dynamic responses, which are measured in a building structure under ambient excitations; these are then transformed to a modal participation ratio (MPR) value for a measuring point and mode. As modal responses vary after damages in the structures, the MPR for a specific location and mode also changes. Thus, in this study, MPR variations, which can be obtained by comparing the MPRs of damaged and healthy structures, are utilized for damage detection without the need for identification of modal parameters. Since MPRs are derived for the number of measuring points (N) in the structure as well as the same number of modes (N), the MPRs and MPR variations can be arranged as an N × N matrix. This low-dimensional MPR variations set is used as the input map of the presented CNN architecture and information about damage locations and severities of the target structure is set as the output of the CNN. The presented CNN is trained for establishing the relationship between MPR variations and damage information and utilized to estimate the damage. The presented damage detection method is applied to numerical examples for two multiple degrees of freedoms and a three-dimensional ASCE benchmark numerical model. Training datasets created from damage scenarios assuming changes in the stiffness are used to train the CNN and the performance of this CNN is verified. Finally, this study examines how variations in the operator size and number of layers in the CNN architecture affect the damage detection performance of CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
期刊最新文献
Analysis, optimization and control of an adaptive tuned vibration absorber featuring magnetoactive materials Numerical investigation on cyclic behaviour of superelastic shape memory alloy (SMA) dampers Hybrid fragility curve derivation of buildings based on post-earthquake reconnaissance data A corrosion threshold-controllable sensing system of Fe-C coated long period fiber gratings for life-cycle mass loss measurement of steel bars with strain and temperature compensation Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1