{"title":"基于矢量形式内禀有限元法的自适应显式静态仿真算法的发展","authors":"Mien-Li Wang, C. Chuang, J. Lee","doi":"10.1093/jom/ufab022","DOIUrl":null,"url":null,"abstract":"\n The vector form intrinsic finite element (VFIFE) method is a solution technique for nonlinear structural problems, which describes a continuous body using a set of particles instead of a mathematical function. Thus, a dynamic particle equation can be established by Newton's law of motion, and a viscous or kinetic damping can be introduced to obtain the steady state of the structure. This paper focuses mainly on the development of a stability condition regarding the explicit central difference method used in VFIFE to guarantee the system's convergence. The process is established and evaluated in combination with a dynamic relaxation method with kinetic damping and discrete control theory. Four numerical examples of structure nonlinear problems are used to verify the accuracy, stability and efficiency of the method.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an adaptive explicit algorithm for static simulation using the vector form intrinsic finite element method\",\"authors\":\"Mien-Li Wang, C. Chuang, J. Lee\",\"doi\":\"10.1093/jom/ufab022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The vector form intrinsic finite element (VFIFE) method is a solution technique for nonlinear structural problems, which describes a continuous body using a set of particles instead of a mathematical function. Thus, a dynamic particle equation can be established by Newton's law of motion, and a viscous or kinetic damping can be introduced to obtain the steady state of the structure. This paper focuses mainly on the development of a stability condition regarding the explicit central difference method used in VFIFE to guarantee the system's convergence. The process is established and evaluated in combination with a dynamic relaxation method with kinetic damping and discrete control theory. Four numerical examples of structure nonlinear problems are used to verify the accuracy, stability and efficiency of the method.\",\"PeriodicalId\":50136,\"journal\":{\"name\":\"Journal of Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jom/ufab022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufab022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Development of an adaptive explicit algorithm for static simulation using the vector form intrinsic finite element method
The vector form intrinsic finite element (VFIFE) method is a solution technique for nonlinear structural problems, which describes a continuous body using a set of particles instead of a mathematical function. Thus, a dynamic particle equation can be established by Newton's law of motion, and a viscous or kinetic damping can be introduced to obtain the steady state of the structure. This paper focuses mainly on the development of a stability condition regarding the explicit central difference method used in VFIFE to guarantee the system's convergence. The process is established and evaluated in combination with a dynamic relaxation method with kinetic damping and discrete control theory. Four numerical examples of structure nonlinear problems are used to verify the accuracy, stability and efficiency of the method.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.