月球六分之一低重力对植物抗寒性提高的影响

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Microgravity Science and Technology Pub Date : 2023-06-20 DOI:10.1007/s12217-023-10058-9
Gengxin Xie, Jing Yang, Yuxuan Xu, Yuanxun Zhang, Dan Qiu, Jinghang Ding
{"title":"月球六分之一低重力对植物抗寒性提高的影响","authors":"Gengxin Xie,&nbsp;Jing Yang,&nbsp;Yuxuan Xu,&nbsp;Yuanxun Zhang,&nbsp;Dan Qiu,&nbsp;Jinghang Ding","doi":"10.1007/s12217-023-10058-9","DOIUrl":null,"url":null,"abstract":"<div><p>For humanity to complete its ambitious solar system exploration, it is crucial to comprehend how terrestrial life reacts to differing planet gravity. We followed the life trajectory of an earth cotton seed's germination, development, and ultimate fate after prolonged exposure to extremely low temperatures using the life-regeneration ecosystem carried by Chang'e 4 probe, which landed on the Moon on January 3rd, 2019, for the first time in human history. In a controlled environment with similar characteristics, such as temperature, humidity, air pressure, and nutrition, we compared this life trajectory on the moon to that on Earth, except for the differences in gravity, light, and radiation. We discovered that the 1/6 g moon gravity speeds up seed germination. Surprisingly, Moon seed-lings demonstrated rapid acclimatization to super-freezing (below minus 52 degrees Celsius) under 1/6 g lunar gravity, maintaining upright and green despite exposure to long-term extremely cold temperatures for 18–24 hours. Based on cellular and molecular reactions caused by moon-low gravity, we suggest probable mechanisms for cold resilience. These unique findings will enhance our understanding of how plants adapt to suboptimal environmental conditions in space.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-023-10058-9.pdf","citationCount":"1","resultStr":"{\"title\":\"The Lunar One-Sixth Low Gravity Conduciveness to the Improvement of the Cold Resistance of Plants\",\"authors\":\"Gengxin Xie,&nbsp;Jing Yang,&nbsp;Yuxuan Xu,&nbsp;Yuanxun Zhang,&nbsp;Dan Qiu,&nbsp;Jinghang Ding\",\"doi\":\"10.1007/s12217-023-10058-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For humanity to complete its ambitious solar system exploration, it is crucial to comprehend how terrestrial life reacts to differing planet gravity. We followed the life trajectory of an earth cotton seed's germination, development, and ultimate fate after prolonged exposure to extremely low temperatures using the life-regeneration ecosystem carried by Chang'e 4 probe, which landed on the Moon on January 3rd, 2019, for the first time in human history. In a controlled environment with similar characteristics, such as temperature, humidity, air pressure, and nutrition, we compared this life trajectory on the moon to that on Earth, except for the differences in gravity, light, and radiation. We discovered that the 1/6 g moon gravity speeds up seed germination. Surprisingly, Moon seed-lings demonstrated rapid acclimatization to super-freezing (below minus 52 degrees Celsius) under 1/6 g lunar gravity, maintaining upright and green despite exposure to long-term extremely cold temperatures for 18–24 hours. Based on cellular and molecular reactions caused by moon-low gravity, we suggest probable mechanisms for cold resilience. These unique findings will enhance our understanding of how plants adapt to suboptimal environmental conditions in space.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12217-023-10058-9.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10058-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10058-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

为了让人类完成其雄心勃勃的太阳系探索,了解地球生命对不同行星重力的反应是至关重要的。2019年1月3日,嫦娥四号探测器在人类历史上首次登陆月球,我们利用嫦娥四号探测器携带的生命再生生态系统,追踪了一颗地球棉籽在极低温条件下的萌发、发育和最终命运的生命轨迹。在温度、湿度、气压和营养等特征相似的受控环境中,我们将月球上的生命轨迹与地球上的生命轨迹进行了比较,只是重力、光线和辐射存在差异。我们发现1/6克的月球重力会加速种子发芽。令人惊讶的是,月球种子在1/6克月球重力下表现出对超低温(低于零下52摄氏度)的快速适应,即使长期暴露在极冷的温度下18-24小时,也能保持直立和绿色。基于月球低重力引起的细胞和分子反应,我们提出了冷恢复的可能机制。这些独特的发现将增强我们对植物如何适应太空中次优环境条件的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Lunar One-Sixth Low Gravity Conduciveness to the Improvement of the Cold Resistance of Plants

For humanity to complete its ambitious solar system exploration, it is crucial to comprehend how terrestrial life reacts to differing planet gravity. We followed the life trajectory of an earth cotton seed's germination, development, and ultimate fate after prolonged exposure to extremely low temperatures using the life-regeneration ecosystem carried by Chang'e 4 probe, which landed on the Moon on January 3rd, 2019, for the first time in human history. In a controlled environment with similar characteristics, such as temperature, humidity, air pressure, and nutrition, we compared this life trajectory on the moon to that on Earth, except for the differences in gravity, light, and radiation. We discovered that the 1/6 g moon gravity speeds up seed germination. Surprisingly, Moon seed-lings demonstrated rapid acclimatization to super-freezing (below minus 52 degrees Celsius) under 1/6 g lunar gravity, maintaining upright and green despite exposure to long-term extremely cold temperatures for 18–24 hours. Based on cellular and molecular reactions caused by moon-low gravity, we suggest probable mechanisms for cold resilience. These unique findings will enhance our understanding of how plants adapt to suboptimal environmental conditions in space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
期刊最新文献
Numerical and Constitutive Analysis of Granular Column Collapse Experiments Under Reduced-Gravity Conditions An Experimental Characterization of Capillary Driven Flows in Microgravity Lower Body Negative Pressure Exposure—as Perspective Countermeasure for Moon Missions Investigation of the Applicability of the Boer Formula for Estimating the Angular Velocity of Rotation Of a Small Spacecraft by Measuring the Components of The Induction Vector of the Earth's Magnetic Field in Evaluating Micro-Accelerations and Forming Control Laws Average Deformation of Sessile Drop Under High Frequency Vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1