{"title":"注意相似变换和冲击波","authors":"Chu A. Kwang-Hua","doi":"10.1016/j.hedp.2022.101020","DOIUrl":null,"url":null,"abstract":"<div><p>Phase transitions of materials can be investigated by shock compression. It is necessary to obtain the equations governing the shock waves formation. We introduce the similarity variable <span><math><mrow><mi>ξ</mi><mo>=</mo><mi>r</mi><mo>/</mo><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for the radial distance <span><math><mi>r</mi></math></span> and the radius of the shock front <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span><span> to handle the continuity equation </span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>ρ</mi><mo>+</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>ρ</mi><mspace></mspace><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>ρ</mi><mspace></mspace><mi>v</mi><mo>/</mo><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span> for the density <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and for the radial velocity <span><math><mrow><mi>v</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> considering a spherically symmetric flow. To illustrate our correct approach via a test case we make detailed as well as crucial remarks on Joy <em>et al.</em>’s (2021) paper.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"45 ","pages":"Article 101020"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on similarity transform and shock waves\",\"authors\":\"Chu A. Kwang-Hua\",\"doi\":\"10.1016/j.hedp.2022.101020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phase transitions of materials can be investigated by shock compression. It is necessary to obtain the equations governing the shock waves formation. We introduce the similarity variable <span><math><mrow><mi>ξ</mi><mo>=</mo><mi>r</mi><mo>/</mo><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> for the radial distance <span><math><mi>r</mi></math></span> and the radius of the shock front <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span><span> to handle the continuity equation </span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>ρ</mi><mo>+</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>ρ</mi><mspace></mspace><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>ρ</mi><mspace></mspace><mi>v</mi><mo>/</mo><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span> for the density <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and for the radial velocity <span><math><mrow><mi>v</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> considering a spherically symmetric flow. To illustrate our correct approach via a test case we make detailed as well as crucial remarks on Joy <em>et al.</em>’s (2021) paper.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"45 \",\"pages\":\"Article 101020\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157418182200043X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157418182200043X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Phase transitions of materials can be investigated by shock compression. It is necessary to obtain the equations governing the shock waves formation. We introduce the similarity variable for the radial distance and the radius of the shock front to handle the continuity equation for the density and for the radial velocity considering a spherically symmetric flow. To illustrate our correct approach via a test case we make detailed as well as crucial remarks on Joy et al.’s (2021) paper.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.