自回归(MC-AR)模型多协变量的贝叶斯估计

Q1 Decision Sciences Annals of Data Science Pub Date : 2023-05-04 DOI:10.1007/s40745-023-00468-2
Jitendra Kumar, Ashok Kumar, Varun Agiwal
{"title":"自回归(MC-AR)模型多协变量的贝叶斯估计","authors":"Jitendra Kumar,&nbsp;Ashok Kumar,&nbsp;Varun Agiwal","doi":"10.1007/s40745-023-00468-2","DOIUrl":null,"url":null,"abstract":"<div><p>In present scenario, handling covariate/explanatory variable with the model is one of most important factor to study with the models. The main advantages of covariate are it’s dependency on past observations. So, study variable is modelled after explaining both on own past and past and future observation of covariates. Present paper deals estimation of parameters of autoregressive model with multiple covariates under Bayesian approach. A simulation and empirical study is performed to check the applicability of the model and recorded the better results.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Estimation of Multiple Covariate of Autoregressive (MC-AR) Model\",\"authors\":\"Jitendra Kumar,&nbsp;Ashok Kumar,&nbsp;Varun Agiwal\",\"doi\":\"10.1007/s40745-023-00468-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In present scenario, handling covariate/explanatory variable with the model is one of most important factor to study with the models. The main advantages of covariate are it’s dependency on past observations. So, study variable is modelled after explaining both on own past and past and future observation of covariates. Present paper deals estimation of parameters of autoregressive model with multiple covariates under Bayesian approach. A simulation and empirical study is performed to check the applicability of the model and recorded the better results.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00468-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00468-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在当前情况下,用模型处理协变量/解释变量是研究模型的最重要因素之一。协变量的主要优点是它依赖于过去的观测数据。因此,研究变量是在解释了自身的过去以及协变量的过去和未来观测值之后建立模型的。本文采用贝叶斯方法对带有多个协变量的自回归模型的参数进行估计。为了检验模型的适用性,本文进行了模拟和实证研究,并记录了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Estimation of Multiple Covariate of Autoregressive (MC-AR) Model

In present scenario, handling covariate/explanatory variable with the model is one of most important factor to study with the models. The main advantages of covariate are it’s dependency on past observations. So, study variable is modelled after explaining both on own past and past and future observation of covariates. Present paper deals estimation of parameters of autoregressive model with multiple covariates under Bayesian approach. A simulation and empirical study is performed to check the applicability of the model and recorded the better results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
期刊最新文献
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis Kernel Method for Estimating Matusita Overlapping Coefficient Using Numerical Approximations Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions Farm-Level Smart Crop Recommendation Framework Using Machine Learning Reaction Function for Financial Market Reacting to Events or Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1