Wang Ting, Peng Yue-hua, Zhang Bang-lin, Leung Jeremy Cheuk-Hin, Shi Wei-lai
{"title":"WRF模式中带4D-Var和涡动力初始化的热带气旋移动","authors":"Wang Ting, Peng Yue-hua, Zhang Bang-lin, Leung Jeremy Cheuk-Hin, Shi Wei-lai","doi":"10.46267/J.1006-8775.2021.018","DOIUrl":null,"url":null,"abstract":"Previous studies showed that 4D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4D-Var can be applied to control the trajectory of simulated tropical cyclones by producing \"optimal\" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously, and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation, which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.","PeriodicalId":17432,"journal":{"name":"热带气象学报","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Move a Tropical Cyclone with 4D-Var and Vortex Dynamical Initialization in WRF Model\",\"authors\":\"Wang Ting, Peng Yue-hua, Zhang Bang-lin, Leung Jeremy Cheuk-Hin, Shi Wei-lai\",\"doi\":\"10.46267/J.1006-8775.2021.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies showed that 4D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4D-Var can be applied to control the trajectory of simulated tropical cyclones by producing \\\"optimal\\\" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously, and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation, which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.\",\"PeriodicalId\":17432,\"journal\":{\"name\":\"热带气象学报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"热带气象学报\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.46267/J.1006-8775.2021.018\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"热带气象学报","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.46267/J.1006-8775.2021.018","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Move a Tropical Cyclone with 4D-Var and Vortex Dynamical Initialization in WRF Model
Previous studies showed that 4D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously, and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation, which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.