{"title":"不同泡沫剂在变压器油池火灾中的灭火性能及气相污染特性","authors":"Jiaqing Zhang, Fengju Shang, Wencheng Zhou, Fei Xiao, Dengfeng Cheng","doi":"10.1177/07349041221142509","DOIUrl":null,"url":null,"abstract":"In this study, aqueous film-forming foam, fluoroprotein foam, and synthetic foam were applied to extinguish the transformer oil pool fires. The fire-extinguishing performance and burn-back resistance were investigated using a laboratory fire-extinguishing system. Moreover, the emission products were analyzed to evaluate the gas-phase pollution characteristics. Results show that aqueous film-forming foam presents the highest fire-extinguishing efficiency, while fluoroprotein foam has the best burn-back performance. Flue gas and gas chromatography–mass spectrometer analyses demonstrate that the use of fluoroprotein foam results in much higher CO emissions than other foams, and the pollutants are mainly from various hydrocarbons produced by incomplete combustion of transformer oil. Synthetic foam and aqueous film-forming foam lead to higher SO2 and NO emissions, and pollutants are mainly dominated by alcohols and ethers. Noteworthily, when using aqueous film-forming foam to extinguish oil pool fire, a persistent organic pollutant, perfluorooctanoic acid, is detected in the gas phase.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"40 1","pages":"463 - 478"},"PeriodicalIF":1.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fire-extinguishing performance and gas-phase pollution characteristics of different foam agents in extinguishing transformer oil pool fire\",\"authors\":\"Jiaqing Zhang, Fengju Shang, Wencheng Zhou, Fei Xiao, Dengfeng Cheng\",\"doi\":\"10.1177/07349041221142509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, aqueous film-forming foam, fluoroprotein foam, and synthetic foam were applied to extinguish the transformer oil pool fires. The fire-extinguishing performance and burn-back resistance were investigated using a laboratory fire-extinguishing system. Moreover, the emission products were analyzed to evaluate the gas-phase pollution characteristics. Results show that aqueous film-forming foam presents the highest fire-extinguishing efficiency, while fluoroprotein foam has the best burn-back performance. Flue gas and gas chromatography–mass spectrometer analyses demonstrate that the use of fluoroprotein foam results in much higher CO emissions than other foams, and the pollutants are mainly from various hydrocarbons produced by incomplete combustion of transformer oil. Synthetic foam and aqueous film-forming foam lead to higher SO2 and NO emissions, and pollutants are mainly dominated by alcohols and ethers. Noteworthily, when using aqueous film-forming foam to extinguish oil pool fire, a persistent organic pollutant, perfluorooctanoic acid, is detected in the gas phase.\",\"PeriodicalId\":15772,\"journal\":{\"name\":\"Journal of Fire Sciences\",\"volume\":\"40 1\",\"pages\":\"463 - 478\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fire Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/07349041221142509\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041221142509","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fire-extinguishing performance and gas-phase pollution characteristics of different foam agents in extinguishing transformer oil pool fire
In this study, aqueous film-forming foam, fluoroprotein foam, and synthetic foam were applied to extinguish the transformer oil pool fires. The fire-extinguishing performance and burn-back resistance were investigated using a laboratory fire-extinguishing system. Moreover, the emission products were analyzed to evaluate the gas-phase pollution characteristics. Results show that aqueous film-forming foam presents the highest fire-extinguishing efficiency, while fluoroprotein foam has the best burn-back performance. Flue gas and gas chromatography–mass spectrometer analyses demonstrate that the use of fluoroprotein foam results in much higher CO emissions than other foams, and the pollutants are mainly from various hydrocarbons produced by incomplete combustion of transformer oil. Synthetic foam and aqueous film-forming foam lead to higher SO2 and NO emissions, and pollutants are mainly dominated by alcohols and ethers. Noteworthily, when using aqueous film-forming foam to extinguish oil pool fire, a persistent organic pollutant, perfluorooctanoic acid, is detected in the gas phase.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).