广义线性逆问题的最优感知矩阵设计

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2023-08-22 DOI:10.1109/TIT.2023.3307553
Junjie Ma;Ji Xu;Arian Maleki
{"title":"广义线性逆问题的最优感知矩阵设计","authors":"Junjie Ma;Ji Xu;Arian Maleki","doi":"10.1109/TIT.2023.3307553","DOIUrl":null,"url":null,"abstract":"We consider an inverse problem \n<inline-formula> <tex-math>$\\boldsymbol {y}= f(\\boldsymbol {Ax})$ </tex-math></inline-formula>\n, where \n<inline-formula> <tex-math>$\\boldsymbol {x}\\in \\mathbb {R}^{n}$ </tex-math></inline-formula>\n is the signal of interest, \n<inline-formula> <tex-math>$\\boldsymbol {A}$ </tex-math></inline-formula>\n is the sensing matrix, \n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\n is a nonlinear function and \n<inline-formula> <tex-math>$\\boldsymbol {y} \\in \\mathbb {R}^{m}$ </tex-math></inline-formula>\n is the measurement vector. In many applications, we have some level of freedom to design the sensing matrix \n<inline-formula> <tex-math>$\\boldsymbol {A}$ </tex-math></inline-formula>\n, and in such circumstances we could optimize \n<inline-formula> <tex-math>$\\boldsymbol {A}$ </tex-math></inline-formula>\n to achieve better reconstruction performance. As a first step towards optimal design, it is important to understand the impact of the sensing matrix on the difficulty of recovering \n<inline-formula> <tex-math>$\\boldsymbol {x}$ </tex-math></inline-formula>\n from \n<inline-formula> <tex-math>$\\boldsymbol {y}$ </tex-math></inline-formula>\n. In this paper, we study the performance of one of the most successful recovery methods, i.e., the expectation propagation (EP) algorithm. We define a notion of spikiness for the spectrum of \n<inline-formula> <tex-math>$\\boldsymbol {A}$ </tex-math></inline-formula>\n and show the importance of this measure for the performance of EP. We show that whether a spikier spectrum can hurt or help the recovery performance depends on \n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\n. Based on our framework, we are able to show that, in phase-retrieval problems, matrices with spikier spectrums are better for EP, while in 1-bit compressed sensing problems, less spiky spectrums lead to better performance. Our results unify and substantially generalize existing results that compare Gaussian and orthogonal matrices, and provide a platform towards designing optimal sensing systems.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 1","pages":"482-508"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward Designing Optimal Sensing Matrices for Generalized Linear Inverse Problems\",\"authors\":\"Junjie Ma;Ji Xu;Arian Maleki\",\"doi\":\"10.1109/TIT.2023.3307553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an inverse problem \\n<inline-formula> <tex-math>$\\\\boldsymbol {y}= f(\\\\boldsymbol {Ax})$ </tex-math></inline-formula>\\n, where \\n<inline-formula> <tex-math>$\\\\boldsymbol {x}\\\\in \\\\mathbb {R}^{n}$ </tex-math></inline-formula>\\n is the signal of interest, \\n<inline-formula> <tex-math>$\\\\boldsymbol {A}$ </tex-math></inline-formula>\\n is the sensing matrix, \\n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\\n is a nonlinear function and \\n<inline-formula> <tex-math>$\\\\boldsymbol {y} \\\\in \\\\mathbb {R}^{m}$ </tex-math></inline-formula>\\n is the measurement vector. In many applications, we have some level of freedom to design the sensing matrix \\n<inline-formula> <tex-math>$\\\\boldsymbol {A}$ </tex-math></inline-formula>\\n, and in such circumstances we could optimize \\n<inline-formula> <tex-math>$\\\\boldsymbol {A}$ </tex-math></inline-formula>\\n to achieve better reconstruction performance. As a first step towards optimal design, it is important to understand the impact of the sensing matrix on the difficulty of recovering \\n<inline-formula> <tex-math>$\\\\boldsymbol {x}$ </tex-math></inline-formula>\\n from \\n<inline-formula> <tex-math>$\\\\boldsymbol {y}$ </tex-math></inline-formula>\\n. In this paper, we study the performance of one of the most successful recovery methods, i.e., the expectation propagation (EP) algorithm. We define a notion of spikiness for the spectrum of \\n<inline-formula> <tex-math>$\\\\boldsymbol {A}$ </tex-math></inline-formula>\\n and show the importance of this measure for the performance of EP. We show that whether a spikier spectrum can hurt or help the recovery performance depends on \\n<inline-formula> <tex-math>$f$ </tex-math></inline-formula>\\n. Based on our framework, we are able to show that, in phase-retrieval problems, matrices with spikier spectrums are better for EP, while in 1-bit compressed sensing problems, less spiky spectrums lead to better performance. Our results unify and substantially generalize existing results that compare Gaussian and orthogonal matrices, and provide a platform towards designing optimal sensing systems.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 1\",\"pages\":\"482-508\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10226297/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10226297/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个反问题$\mathbf{y}= f(\mathbf{Ax})$,其中$\mathbf{x}\in\mathbb{R}^n$是感兴趣的信号,$\mathbf{A}$是感知矩阵,$f$是一个非线性函数,$\mathbf{y} \in\mathbb{R}^ m$是测量向量。在许多应用程序中,我们有一定程度的自由来设计传感矩阵$\mathbf{A}$,在这种情况下,我们可以优化$\mathbf{A}$以获得更好的重构性能。作为优化设计的第一步,重要的是要了解感知矩阵对从$\mathbf{y}$中恢复$\mathbf{x}$的难度的影响。本文研究了一种最成功的恢复方法,即期望传播(EP)算法的性能。我们定义了$\bmmathbfA}$谱的尖峰性概念,并说明了该度量对EP性能的重要性。我们表明,尖峰谱是损害还是有助于恢复性能取决于$f$。基于我们的框架,我们能够证明,在相位检索问题中,具有尖谱的矩阵更适合EP,而在1位压缩感知问题中,较少的尖谱导致更好的性能。我们的结果统一并概括了现有的比较高斯矩阵和正交矩阵的结果,并为设计最优传感系统提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Designing Optimal Sensing Matrices for Generalized Linear Inverse Problems
We consider an inverse problem $\boldsymbol {y}= f(\boldsymbol {Ax})$ , where $\boldsymbol {x}\in \mathbb {R}^{n}$ is the signal of interest, $\boldsymbol {A}$ is the sensing matrix, $f$ is a nonlinear function and $\boldsymbol {y} \in \mathbb {R}^{m}$ is the measurement vector. In many applications, we have some level of freedom to design the sensing matrix $\boldsymbol {A}$ , and in such circumstances we could optimize $\boldsymbol {A}$ to achieve better reconstruction performance. As a first step towards optimal design, it is important to understand the impact of the sensing matrix on the difficulty of recovering $\boldsymbol {x}$ from $\boldsymbol {y}$ . In this paper, we study the performance of one of the most successful recovery methods, i.e., the expectation propagation (EP) algorithm. We define a notion of spikiness for the spectrum of $\boldsymbol {A}$ and show the importance of this measure for the performance of EP. We show that whether a spikier spectrum can hurt or help the recovery performance depends on $f$ . Based on our framework, we are able to show that, in phase-retrieval problems, matrices with spikier spectrums are better for EP, while in 1-bit compressed sensing problems, less spiky spectrums lead to better performance. Our results unify and substantially generalize existing results that compare Gaussian and orthogonal matrices, and provide a platform towards designing optimal sensing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1