Pee-Yew Lee, H. Huang, T. Ko, Ying-Lun Hung, Li-Yan Wu, Jianhua Fan, Yung-Sheng Lin
{"title":"气泡对氟辅助电流置换反应制备金枝晶和硅纳米线的影响","authors":"Pee-Yew Lee, H. Huang, T. Ko, Ying-Lun Hung, Li-Yan Wu, Jianhua Fan, Yung-Sheng Lin","doi":"10.1115/1.4062878","DOIUrl":null,"url":null,"abstract":"\n Abstract The fluoride-assisted galvanic replacement reaction is a conventional method for fabricating metallic dendrites on silicon wafers. However, whether bubbles affect manufacturing metallic dendrites is unclear. This study investigated the effects of bubbles on manufacturing Au dendrites and silicon nanowires through metal-assisted chemical etching. The results of manufacture under three conditions (standard, shaking, and vacuum conditions) were compared. Synchronous growth of Au dendrites and silicon nanowires were observed on the silicon wafers. The Au dendrite deposition rate was higher than the silicon etching rate. Compared with the standard condition, the vacuum condition increased the synthesis rates of Au dendrites and silicon nanowires by 1.1 and 0.2 μm/min, respectively. Therefore, the elimination of bubbles by vacuum can considerably accelerate manufacturing Au dendrites and silicon nanowires.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of bubbles on manufacturing gold dendrites and silicon nanowires through the fluoride-assisted galvanic replacement reaction\",\"authors\":\"Pee-Yew Lee, H. Huang, T. Ko, Ying-Lun Hung, Li-Yan Wu, Jianhua Fan, Yung-Sheng Lin\",\"doi\":\"10.1115/1.4062878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Abstract The fluoride-assisted galvanic replacement reaction is a conventional method for fabricating metallic dendrites on silicon wafers. However, whether bubbles affect manufacturing metallic dendrites is unclear. This study investigated the effects of bubbles on manufacturing Au dendrites and silicon nanowires through metal-assisted chemical etching. The results of manufacture under three conditions (standard, shaking, and vacuum conditions) were compared. Synchronous growth of Au dendrites and silicon nanowires were observed on the silicon wafers. The Au dendrite deposition rate was higher than the silicon etching rate. Compared with the standard condition, the vacuum condition increased the synthesis rates of Au dendrites and silicon nanowires by 1.1 and 0.2 μm/min, respectively. Therefore, the elimination of bubbles by vacuum can considerably accelerate manufacturing Au dendrites and silicon nanowires.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062878\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062878","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Effects of bubbles on manufacturing gold dendrites and silicon nanowires through the fluoride-assisted galvanic replacement reaction
Abstract The fluoride-assisted galvanic replacement reaction is a conventional method for fabricating metallic dendrites on silicon wafers. However, whether bubbles affect manufacturing metallic dendrites is unclear. This study investigated the effects of bubbles on manufacturing Au dendrites and silicon nanowires through metal-assisted chemical etching. The results of manufacture under three conditions (standard, shaking, and vacuum conditions) were compared. Synchronous growth of Au dendrites and silicon nanowires were observed on the silicon wafers. The Au dendrite deposition rate was higher than the silicon etching rate. Compared with the standard condition, the vacuum condition increased the synthesis rates of Au dendrites and silicon nanowires by 1.1 and 0.2 μm/min, respectively. Therefore, the elimination of bubbles by vacuum can considerably accelerate manufacturing Au dendrites and silicon nanowires.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining