涉及不可冷凝气体的单闪式地热发电厂的热建模与仿真:以印度尼西亚西爪哇加鲁特Kamojang地热田为例

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2023-03-20 DOI:10.1186/s40517-023-00249-3
Candra Mecca Sufyana, Fiki Taufik Akbar, Wahyu Srigutomo
{"title":"涉及不可冷凝气体的单闪式地热发电厂的热建模与仿真:以印度尼西亚西爪哇加鲁特Kamojang地热田为例","authors":"Candra Mecca Sufyana,&nbsp;Fiki Taufik Akbar,&nbsp;Wahyu Srigutomo","doi":"10.1186/s40517-023-00249-3","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of non-condensable gases (NCGs) in a geothermal fluid disrupts the vacuum process in the condenser, reducing turbine efficiency and decreasing the total power output of the geothermal power plant (GPP). Therefore, to optimize the thermodynamic efficiency of a GPP, NCGs should be removed using a gas removal system. Since there is a substantial lack of design and simulation software for a GPP including NCG removal alternatives, in this study, we aimed to model and develop a software-based interface to simulate mass and energy balance involving an NCG fraction in a single-flash GPP as well as examine the thermodynamic performance of the gas removal system, which is the most important step in the planning and designing phase of a GPP. This software was validated using outputs of Kamojang GPP Units 2, 3, and 4 located at Kamojang geothermal field, Garut, West Java, Indonesia. Units 2 and 3 use two ejectors which are installed in series, and Unit 4 utilizes a hybrid system (HS) that is mostly a combination of vacuum pumps and a steam jet ejector (SJE). Our results showed that Kamojang GPP Units 2 and 3 generate 55.295 MW of power with an absolute error of 0.53%, whereas Unit 4 generates 60.218 MW of power with a 0.36% absolute error concerning the field data. These results correspond with the expected minimum error; therefore, our model’s parameters are considered valid and can be used for simulation. We found that using the simulation, the total steam saved by the HS at Kamojang GPP Units 2 and 3 was 534 kW. Furthermore, the net power production was reduced by 1.6% for the HS and 2.03% for the SJE with every 1% increase in the NCG fraction. The power requirement of the vacuum pumps remained less than the power generated by the motive steam which the ejector requires to dispose of the same amount of NCG, indicating that Kamojang GPP Units 2 and 3 will be more efficient if an HS is used.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00249-3","citationCount":"0","resultStr":"{\"title\":\"Thermal modeling and simulation of a single-flash geothermal power plant involving non-condensable gas: a case study of Kamojang geothermal field in Garut, West Java, Indonesia\",\"authors\":\"Candra Mecca Sufyana,&nbsp;Fiki Taufik Akbar,&nbsp;Wahyu Srigutomo\",\"doi\":\"10.1186/s40517-023-00249-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The presence of non-condensable gases (NCGs) in a geothermal fluid disrupts the vacuum process in the condenser, reducing turbine efficiency and decreasing the total power output of the geothermal power plant (GPP). Therefore, to optimize the thermodynamic efficiency of a GPP, NCGs should be removed using a gas removal system. Since there is a substantial lack of design and simulation software for a GPP including NCG removal alternatives, in this study, we aimed to model and develop a software-based interface to simulate mass and energy balance involving an NCG fraction in a single-flash GPP as well as examine the thermodynamic performance of the gas removal system, which is the most important step in the planning and designing phase of a GPP. This software was validated using outputs of Kamojang GPP Units 2, 3, and 4 located at Kamojang geothermal field, Garut, West Java, Indonesia. Units 2 and 3 use two ejectors which are installed in series, and Unit 4 utilizes a hybrid system (HS) that is mostly a combination of vacuum pumps and a steam jet ejector (SJE). Our results showed that Kamojang GPP Units 2 and 3 generate 55.295 MW of power with an absolute error of 0.53%, whereas Unit 4 generates 60.218 MW of power with a 0.36% absolute error concerning the field data. These results correspond with the expected minimum error; therefore, our model’s parameters are considered valid and can be used for simulation. We found that using the simulation, the total steam saved by the HS at Kamojang GPP Units 2 and 3 was 534 kW. Furthermore, the net power production was reduced by 1.6% for the HS and 2.03% for the SJE with every 1% increase in the NCG fraction. The power requirement of the vacuum pumps remained less than the power generated by the motive steam which the ejector requires to dispose of the same amount of NCG, indicating that Kamojang GPP Units 2 and 3 will be more efficient if an HS is used.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00249-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-023-00249-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00249-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

地热流体中不凝性气体(NCGs)的存在破坏了冷凝器中的真空过程,降低了涡轮效率并降低了地热发电厂(GPP)的总输出功率。因此,为了优化GPP的热力学效率,应该使用除气系统去除NCGs。由于目前缺乏包括NCG去除方案在内的GPP设计和仿真软件,在本研究中,我们的目标是建模和开发一个基于软件的界面,以模拟单闪式GPP中涉及NCG馏分的质量和能量平衡,并检查气体去除系统的热力学性能,这是GPP规划和设计阶段最重要的一步。该软件使用位于印度尼西亚西爪哇加鲁特Kamojang地热田的Kamojang GPP 2、3和4号机组的输出进行了验证。2号和3号机组使用串联安装的两个喷射器,4号机组使用混合系统(HS),主要是真空泵和蒸汽喷射器(SJE)的组合。结果表明,Kamojang GPP 2、3号机组发电量为55.295 MW,绝对误差为0.53%;4号机组发电量为60.218 MW,绝对误差为0.36%。这些结果符合期望的最小误差;因此,我们的模型参数被认为是有效的,可以用于仿真。通过模拟计算发现,卡莫江GPP 2、3号机组的HS总节约蒸汽量为534 kW。此外,NCG含量每增加1%,HS和SJE的净发电量分别减少1.6%和2.03%。真空泵的功率需求仍然低于喷射器处理相同数量的NCG所需的动力蒸汽产生的功率,这表明如果使用HS, Kamojang GPP机组2和3将更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal modeling and simulation of a single-flash geothermal power plant involving non-condensable gas: a case study of Kamojang geothermal field in Garut, West Java, Indonesia

The presence of non-condensable gases (NCGs) in a geothermal fluid disrupts the vacuum process in the condenser, reducing turbine efficiency and decreasing the total power output of the geothermal power plant (GPP). Therefore, to optimize the thermodynamic efficiency of a GPP, NCGs should be removed using a gas removal system. Since there is a substantial lack of design and simulation software for a GPP including NCG removal alternatives, in this study, we aimed to model and develop a software-based interface to simulate mass and energy balance involving an NCG fraction in a single-flash GPP as well as examine the thermodynamic performance of the gas removal system, which is the most important step in the planning and designing phase of a GPP. This software was validated using outputs of Kamojang GPP Units 2, 3, and 4 located at Kamojang geothermal field, Garut, West Java, Indonesia. Units 2 and 3 use two ejectors which are installed in series, and Unit 4 utilizes a hybrid system (HS) that is mostly a combination of vacuum pumps and a steam jet ejector (SJE). Our results showed that Kamojang GPP Units 2 and 3 generate 55.295 MW of power with an absolute error of 0.53%, whereas Unit 4 generates 60.218 MW of power with a 0.36% absolute error concerning the field data. These results correspond with the expected minimum error; therefore, our model’s parameters are considered valid and can be used for simulation. We found that using the simulation, the total steam saved by the HS at Kamojang GPP Units 2 and 3 was 534 kW. Furthermore, the net power production was reduced by 1.6% for the HS and 2.03% for the SJE with every 1% increase in the NCG fraction. The power requirement of the vacuum pumps remained less than the power generated by the motive steam which the ejector requires to dispose of the same amount of NCG, indicating that Kamojang GPP Units 2 and 3 will be more efficient if an HS is used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Pressure propagation during hydraulic stimulation: case study of the 2000 stimulation at Soultz-sous-Forêts Controlling injection conditions of a deep coaxial closed well heat exchanger to meet irregular heat demands: a field case study in Belgium (Mol) A probabilistic model-based approach to assess and minimize scaling in geothermal plants Leveraging machine learning for enhanced reservoir permeability estimation in geothermal hotspots: a case study of the Williston Basin Integrative analysis of the Aachen geothermal system (Germany) with an interdisciplinary conceptual model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1