{"title":"激光与回流焊Sn-Ag-Cu/Ni-P接头固-固界面反应及焊接性能的对比研究","authors":"Yuehua Wu, Z.J. Zhang, L.D. Chen, X. Zhou","doi":"10.1108/mi-11-2022-0185","DOIUrl":null,"url":null,"abstract":"\nPurpose\nLaser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.\n\n\nDesign/methodology/approach\nIn this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.\n\n\nFindings\nIn the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.\n\n\nOriginality/value\nLaser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative study on solid-solid interfacial reaction and bonding property of Sn-Ag-Cu/Ni-P joints by laser and reflow soldering\",\"authors\":\"Yuehua Wu, Z.J. Zhang, L.D. Chen, X. Zhou\",\"doi\":\"10.1108/mi-11-2022-0185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nLaser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.\\n\\n\\nDesign/methodology/approach\\nIn this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.\\n\\n\\nFindings\\nIn the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.\\n\\n\\nOriginality/value\\nLaser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/mi-11-2022-0185\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-11-2022-0185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comparative study on solid-solid interfacial reaction and bonding property of Sn-Ag-Cu/Ni-P joints by laser and reflow soldering
Purpose
Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.
Design/methodology/approach
In this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.
Findings
In the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.
Originality/value
Laser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.