B. R. Rincon Troconis, S. Sharp, H. Ozyildirim, C. Demarest, Jacob Wright, Luis Perdomo-Hurtado, J. Scully
{"title":"海洋大气环境中预应力桥桩用耐腐蚀不锈钢绞线","authors":"B. R. Rincon Troconis, S. Sharp, H. Ozyildirim, C. Demarest, Jacob Wright, Luis Perdomo-Hurtado, J. Scully","doi":"10.5006/4316","DOIUrl":null,"url":null,"abstract":"This study demonstrated that stranded highly cold-worked 2205 stainless steel (SCW2205) exhibits superior corrosion resistance when compared to stranded cold-worked AISI 1080 (ASTM A416) steel and cold-worked modified austenitic stainless steel 201, making it a viable candidate for prestressing applications with extended service life. Laboratory and field testing were performed. The material microstructure was characterized using scanning electron microscopy/energy dispersive x-ray spectroscopy, transmission electron microscopy, and x-ray diffraction. Then, laboratory corrosion testing, including linear sweep voltammetry, pitting resistance exposure, and four-point bend stress corrosion cracking (SCC) testing, was performed under different conditions. These conditions included concrete pore solution saturated with chlorides, direct exposure to artificial seawater, various concentrations of NaCl and MgCl2, representative inland salt deposition conditions, and oxidizing conditions with high chloride concentrations. The laboratory studies were augmented with field testing (259 d), comprised of four-point bend SCC, U-bend SCC testing (ASTM G30), and atmospheric contaminant measurements. The pitting resistance results, corrosion morphology, stable pit safe range, SCC results in the lab and in the field, and hydrogen embrittlement (HE) testing by slow strain rate testing (SSRT) under cathodic polarization as a diagnostic showed that SCW2205 outperformed the other steels tested, in the case of marine atmospheric corrosive conditions. SCC in SCW2205 was characterized by a selective localized anodic dissolution of the ferrite matrix and environmentally assisted cracking in the austenite phase. However, SCC was only found in SCW2205 at or above 65°C. SSRTs confirmed susceptibility to hydrogen uptake and a hydrogen-assisted mechanism of HE given sufficient hydrogen. It is speculated that hydrogen uptake in pits or crevice sites might be a route to hydrogen absorption worth exploring further since the absence of cathodic polarization in application precludes hydrogen production and uptake.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Corrosion-Resistant Stainless-Steel Strands for Prestressed Bridge Piles in Marine Atmospheric Environments\",\"authors\":\"B. R. Rincon Troconis, S. Sharp, H. Ozyildirim, C. Demarest, Jacob Wright, Luis Perdomo-Hurtado, J. Scully\",\"doi\":\"10.5006/4316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrated that stranded highly cold-worked 2205 stainless steel (SCW2205) exhibits superior corrosion resistance when compared to stranded cold-worked AISI 1080 (ASTM A416) steel and cold-worked modified austenitic stainless steel 201, making it a viable candidate for prestressing applications with extended service life. Laboratory and field testing were performed. The material microstructure was characterized using scanning electron microscopy/energy dispersive x-ray spectroscopy, transmission electron microscopy, and x-ray diffraction. Then, laboratory corrosion testing, including linear sweep voltammetry, pitting resistance exposure, and four-point bend stress corrosion cracking (SCC) testing, was performed under different conditions. These conditions included concrete pore solution saturated with chlorides, direct exposure to artificial seawater, various concentrations of NaCl and MgCl2, representative inland salt deposition conditions, and oxidizing conditions with high chloride concentrations. The laboratory studies were augmented with field testing (259 d), comprised of four-point bend SCC, U-bend SCC testing (ASTM G30), and atmospheric contaminant measurements. The pitting resistance results, corrosion morphology, stable pit safe range, SCC results in the lab and in the field, and hydrogen embrittlement (HE) testing by slow strain rate testing (SSRT) under cathodic polarization as a diagnostic showed that SCW2205 outperformed the other steels tested, in the case of marine atmospheric corrosive conditions. SCC in SCW2205 was characterized by a selective localized anodic dissolution of the ferrite matrix and environmentally assisted cracking in the austenite phase. However, SCC was only found in SCW2205 at or above 65°C. SSRTs confirmed susceptibility to hydrogen uptake and a hydrogen-assisted mechanism of HE given sufficient hydrogen. It is speculated that hydrogen uptake in pits or crevice sites might be a route to hydrogen absorption worth exploring further since the absence of cathodic polarization in application precludes hydrogen production and uptake.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5006/4316\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4316","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion-Resistant Stainless-Steel Strands for Prestressed Bridge Piles in Marine Atmospheric Environments
This study demonstrated that stranded highly cold-worked 2205 stainless steel (SCW2205) exhibits superior corrosion resistance when compared to stranded cold-worked AISI 1080 (ASTM A416) steel and cold-worked modified austenitic stainless steel 201, making it a viable candidate for prestressing applications with extended service life. Laboratory and field testing were performed. The material microstructure was characterized using scanning electron microscopy/energy dispersive x-ray spectroscopy, transmission electron microscopy, and x-ray diffraction. Then, laboratory corrosion testing, including linear sweep voltammetry, pitting resistance exposure, and four-point bend stress corrosion cracking (SCC) testing, was performed under different conditions. These conditions included concrete pore solution saturated with chlorides, direct exposure to artificial seawater, various concentrations of NaCl and MgCl2, representative inland salt deposition conditions, and oxidizing conditions with high chloride concentrations. The laboratory studies were augmented with field testing (259 d), comprised of four-point bend SCC, U-bend SCC testing (ASTM G30), and atmospheric contaminant measurements. The pitting resistance results, corrosion morphology, stable pit safe range, SCC results in the lab and in the field, and hydrogen embrittlement (HE) testing by slow strain rate testing (SSRT) under cathodic polarization as a diagnostic showed that SCW2205 outperformed the other steels tested, in the case of marine atmospheric corrosive conditions. SCC in SCW2205 was characterized by a selective localized anodic dissolution of the ferrite matrix and environmentally assisted cracking in the austenite phase. However, SCC was only found in SCW2205 at or above 65°C. SSRTs confirmed susceptibility to hydrogen uptake and a hydrogen-assisted mechanism of HE given sufficient hydrogen. It is speculated that hydrogen uptake in pits or crevice sites might be a route to hydrogen absorption worth exploring further since the absence of cathodic polarization in application precludes hydrogen production and uptake.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.