埃塞俄比亚阿贝河流域水文气象干旱监测及趋势分析

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Meteorology Pub Date : 2022-11-28 DOI:10.1155/2022/2048077
Kassa Abera Tareke, Admasu Gebeyehu Awoke
{"title":"埃塞俄比亚阿贝河流域水文气象干旱监测及趋势分析","authors":"Kassa Abera Tareke, Admasu Gebeyehu Awoke","doi":"10.1155/2022/2048077","DOIUrl":null,"url":null,"abstract":"The definition of drought is very controversial due to its multi-dimensional impact and slow propagation in onset and end. Predicting the accurate occurrence of drought remains a challenging task for researchers. The study focused on hydrological and meteorological drought monitoring and trend analysis in the Abbay river basin, using the streamflow drought index (SDI), standardized precipitation index (SPI), and reconnaissance drought index (RDI), respectively, to fill this research gap. The study also looked into the interrelationships between the two drought indicators. The SDI, SPI, and RDI were calculated using long-term streamflow, precipitation, and temperature data collected from 1973 to 2014. The data were collected from eight streamflow stations and fifteen meteorological gauge stations. DrinC software (Drought Indices Calculator) was used to calculate the SDI, SPI, and RDI values. The result from meteorological drought using SPI12 and RDI12 shows that 1975, 1981, 1984, 1986, 1991, 1994, and 2010 were extreme drought years, whereas 1983, 1984, 2001, and 2010 were the most extreme hydrological drought years based on the SDI12 result. Except for Bahir Dar and Gondar, a severe drought occurs at least once a decade in all stations considered in this study. In general, the SPI, RDI, and SDI results indicated that the study area was exposed to the most prolonged severe and extreme drought from 1981 to 1991. The findings of this study also demonstrated that the occurrence of hydrometeorological droughts in the Abbay river basin has a positive correlation at long time scales of 6 and 12 months. The trend analysis using the Mann–Kendall test implied that there was a significant meteorological drought trend in two stations (Debre Berhan and Fiche) at SPI12 and RDI12 time scale, but for the remaining thirteen stations, there is no trend in all time scales. The hydrological drought trend analysis in the basin on a seasonal (SDI3) and yearly (SDI12) time scale also revealed that three streamflow stations have a positive trend (Kessie, Gummera, and Border). This implies that water resource management is still a vital tool for the sustainable development of the Abbay river basin in the future.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydrological and Meteorological Drought Monitoring and Trend Analysis in Abbay River Basin, Ethiopia\",\"authors\":\"Kassa Abera Tareke, Admasu Gebeyehu Awoke\",\"doi\":\"10.1155/2022/2048077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The definition of drought is very controversial due to its multi-dimensional impact and slow propagation in onset and end. Predicting the accurate occurrence of drought remains a challenging task for researchers. The study focused on hydrological and meteorological drought monitoring and trend analysis in the Abbay river basin, using the streamflow drought index (SDI), standardized precipitation index (SPI), and reconnaissance drought index (RDI), respectively, to fill this research gap. The study also looked into the interrelationships between the two drought indicators. The SDI, SPI, and RDI were calculated using long-term streamflow, precipitation, and temperature data collected from 1973 to 2014. The data were collected from eight streamflow stations and fifteen meteorological gauge stations. DrinC software (Drought Indices Calculator) was used to calculate the SDI, SPI, and RDI values. The result from meteorological drought using SPI12 and RDI12 shows that 1975, 1981, 1984, 1986, 1991, 1994, and 2010 were extreme drought years, whereas 1983, 1984, 2001, and 2010 were the most extreme hydrological drought years based on the SDI12 result. Except for Bahir Dar and Gondar, a severe drought occurs at least once a decade in all stations considered in this study. In general, the SPI, RDI, and SDI results indicated that the study area was exposed to the most prolonged severe and extreme drought from 1981 to 1991. The findings of this study also demonstrated that the occurrence of hydrometeorological droughts in the Abbay river basin has a positive correlation at long time scales of 6 and 12 months. The trend analysis using the Mann–Kendall test implied that there was a significant meteorological drought trend in two stations (Debre Berhan and Fiche) at SPI12 and RDI12 time scale, but for the remaining thirteen stations, there is no trend in all time scales. The hydrological drought trend analysis in the basin on a seasonal (SDI3) and yearly (SDI12) time scale also revealed that three streamflow stations have a positive trend (Kessie, Gummera, and Border). This implies that water resource management is still a vital tool for the sustainable development of the Abbay river basin in the future.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2048077\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/2048077","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

干旱的定义非常有争议,因为它具有多维度的影响,并且在开始和结束时传播缓慢。预测干旱的准确发生对研究人员来说仍然是一项具有挑战性的任务。本研究重点研究了阿贝河流域的水文气象干旱监测和趋势分析,分别使用径流干旱指数(SDI)、标准化降水指数(SPI)和勘测干旱指数(RDI)来填补这一研究空白。该研究还调查了这两个干旱指标之间的相互关系。SDI、SPI和RDI是使用1973年至2014年收集的长期流量、降水和温度数据计算的。这些数据是从8个流量站和15个气象测量站收集的。DrinC软件(干旱指数计算器)用于计算SDI、SPI和RDI值。SPI12和RDI12的气象干旱结果表明,1975年、1981年、1984年、1986年、1991年、1994年和2010年是极端干旱年份,而基于SDI12的结果,1983年、1984、2001和2010年则是最极端的水文干旱年份。除Bahir Dar和Gondar外,本研究中考虑的所有站点至少每十年发生一次严重干旱。总的来说,SPI、RDI和SDI结果表明,研究地区在1981年至1991年期间遭受了最长时间的严重和极端干旱。该研究结果还表明,阿贝河流域水文气象干旱的发生在6个月和12个月的长时间尺度上具有正相关关系。使用Mann–Kendall检验的趋势分析表明,在SPI12和RDI12时间尺度上,两个站点(Debre Berhan和Fiche)存在显著的气象干旱趋势,但对于其余13个站点,在所有时间尺度上都没有趋势。在季节(SDI3)和年度(SDI12)时间尺度上对流域的水文干旱趋势分析也表明,三个径流站(Kessie、Gummera和Border)具有积极的趋势。这意味着水资源管理仍然是阿贝河流域未来可持续发展的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrological and Meteorological Drought Monitoring and Trend Analysis in Abbay River Basin, Ethiopia
The definition of drought is very controversial due to its multi-dimensional impact and slow propagation in onset and end. Predicting the accurate occurrence of drought remains a challenging task for researchers. The study focused on hydrological and meteorological drought monitoring and trend analysis in the Abbay river basin, using the streamflow drought index (SDI), standardized precipitation index (SPI), and reconnaissance drought index (RDI), respectively, to fill this research gap. The study also looked into the interrelationships between the two drought indicators. The SDI, SPI, and RDI were calculated using long-term streamflow, precipitation, and temperature data collected from 1973 to 2014. The data were collected from eight streamflow stations and fifteen meteorological gauge stations. DrinC software (Drought Indices Calculator) was used to calculate the SDI, SPI, and RDI values. The result from meteorological drought using SPI12 and RDI12 shows that 1975, 1981, 1984, 1986, 1991, 1994, and 2010 were extreme drought years, whereas 1983, 1984, 2001, and 2010 were the most extreme hydrological drought years based on the SDI12 result. Except for Bahir Dar and Gondar, a severe drought occurs at least once a decade in all stations considered in this study. In general, the SPI, RDI, and SDI results indicated that the study area was exposed to the most prolonged severe and extreme drought from 1981 to 1991. The findings of this study also demonstrated that the occurrence of hydrometeorological droughts in the Abbay river basin has a positive correlation at long time scales of 6 and 12 months. The trend analysis using the Mann–Kendall test implied that there was a significant meteorological drought trend in two stations (Debre Berhan and Fiche) at SPI12 and RDI12 time scale, but for the remaining thirteen stations, there is no trend in all time scales. The hydrological drought trend analysis in the basin on a seasonal (SDI3) and yearly (SDI12) time scale also revealed that three streamflow stations have a positive trend (Kessie, Gummera, and Border). This implies that water resource management is still a vital tool for the sustainable development of the Abbay river basin in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
期刊最新文献
Sensitivity of WRF-Simulated 2 m Temperature and Precipitation to Physics Options over the Loess Plateau Analysis of Urban Heat Island Effect in Wuhan Urban Area Based on Prediction of Urban Underlying Surface Coverage Type Change Temporal Dynamics and Trend Analysis of Areal Rainfall in Muger Subwatershed, Upper Blue Nile, Ethiopia Statistical Analysis for the Detection of Change Points and the Evaluation of Monthly Mean Temperature Trends of the Moulouya Basin (Morocco) Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1