Kusum Yadav, Elham Kariri, Shoayee Alotaibi, W. Viriyasitavat, G. Dhiman, Amandeep Kaur
{"title":"针对物联网联合学习攻击场景的隐私保护","authors":"Kusum Yadav, Elham Kariri, Shoayee Alotaibi, W. Viriyasitavat, G. Dhiman, Amandeep Kaur","doi":"10.1080/17517575.2022.2101025","DOIUrl":null,"url":null,"abstract":"ABSTRACT Laws and regulations for privacy protection have been promulgated one after another, and the phenomenon of data islands has become a significant bottleneck hindering the development of big data and artificial intelligence technologies. From the perspective of the historical development, concepts, and architecture classification of federated learning, the technical advantages of federated learning are explained using Internet of Things. Simultaneously, numerous attack methods and classifications of federated learning systems are examined, as well as the distinctions between different federated learning encryption algorithms. Finally, it reviews research in the subject of federal learning privacy protection and security mechanisms, as well as identifies difficulties and opportunities.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Privacy protection against attack scenario of federated learning using internet of things\",\"authors\":\"Kusum Yadav, Elham Kariri, Shoayee Alotaibi, W. Viriyasitavat, G. Dhiman, Amandeep Kaur\",\"doi\":\"10.1080/17517575.2022.2101025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Laws and regulations for privacy protection have been promulgated one after another, and the phenomenon of data islands has become a significant bottleneck hindering the development of big data and artificial intelligence technologies. From the perspective of the historical development, concepts, and architecture classification of federated learning, the technical advantages of federated learning are explained using Internet of Things. Simultaneously, numerous attack methods and classifications of federated learning systems are examined, as well as the distinctions between different federated learning encryption algorithms. Finally, it reviews research in the subject of federal learning privacy protection and security mechanisms, as well as identifies difficulties and opportunities.\",\"PeriodicalId\":11750,\"journal\":{\"name\":\"Enterprise Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enterprise Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/17517575.2022.2101025\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2022.2101025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Privacy protection against attack scenario of federated learning using internet of things
ABSTRACT Laws and regulations for privacy protection have been promulgated one after another, and the phenomenon of data islands has become a significant bottleneck hindering the development of big data and artificial intelligence technologies. From the perspective of the historical development, concepts, and architecture classification of federated learning, the technical advantages of federated learning are explained using Internet of Things. Simultaneously, numerous attack methods and classifications of federated learning systems are examined, as well as the distinctions between different federated learning encryption algorithms. Finally, it reviews research in the subject of federal learning privacy protection and security mechanisms, as well as identifies difficulties and opportunities.
期刊介绍:
Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.