制备食品包装薄膜用聚乳酸和淀粉共混物的研究进展

Q2 Materials Science Polymers from Renewable Resources Pub Date : 2023-02-06 DOI:10.1177/20412479231154924
Lucas Rafael Carneiro da Silva, A. Rios, Ruth Marlene Campomanes Santana
{"title":"制备食品包装薄膜用聚乳酸和淀粉共混物的研究进展","authors":"Lucas Rafael Carneiro da Silva, A. Rios, Ruth Marlene Campomanes Santana","doi":"10.1177/20412479231154924","DOIUrl":null,"url":null,"abstract":"The limited degradation of synthetic polymers used in food packaging when discarded in the environment is a major concern for society. Therefore, industry and academia have sought to develop biodegradable and eco-friendly materials for single-use in packaging. An interesting alternative for the food industry is biodegradable polymeric films, which is why different biopolymers have been used in the production of sustainable packaging. It is worth mentioning that the use of biodegradable polymers is one of the most successful innovations in the industry to address issues related to the environment. Among the available raw materials, starch extracted from different renewable sources is very promising for this purpose, due to its abundance, low-cost compared to other polymers and ability to produce non-toxic films. However, when used alone, pure starch has many limitations, which can be overcome by developing a mixture with other polymers (polymer blends), preferably from renewable and biodegradable sources, such as poly(lactic acid) (PLA). In this context, the absence of literature reviews evidencing the results of the application of films in foods led us to write this article, given the importance of polymer blends produced with different types of starch (cassava, corn, pea, potato, rice and wheat) and the PLA matrix. According to the results, it is clear that polymer blends based on PLA/Starch for food packaging are very promising, already being part of the industries solutions, aiming to minimize the large volume of plastic waste of petrochemical origin discarded in nature. Obviously, as with any technology, more research is needed to further improve the performance of the films, and while much research has made great strides, there are still limitations that prevent the commercialization of these materials.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polymer blends of poly(lactic acid) and starch for the production of films applied in food packaging: A brief review\",\"authors\":\"Lucas Rafael Carneiro da Silva, A. Rios, Ruth Marlene Campomanes Santana\",\"doi\":\"10.1177/20412479231154924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limited degradation of synthetic polymers used in food packaging when discarded in the environment is a major concern for society. Therefore, industry and academia have sought to develop biodegradable and eco-friendly materials for single-use in packaging. An interesting alternative for the food industry is biodegradable polymeric films, which is why different biopolymers have been used in the production of sustainable packaging. It is worth mentioning that the use of biodegradable polymers is one of the most successful innovations in the industry to address issues related to the environment. Among the available raw materials, starch extracted from different renewable sources is very promising for this purpose, due to its abundance, low-cost compared to other polymers and ability to produce non-toxic films. However, when used alone, pure starch has many limitations, which can be overcome by developing a mixture with other polymers (polymer blends), preferably from renewable and biodegradable sources, such as poly(lactic acid) (PLA). In this context, the absence of literature reviews evidencing the results of the application of films in foods led us to write this article, given the importance of polymer blends produced with different types of starch (cassava, corn, pea, potato, rice and wheat) and the PLA matrix. According to the results, it is clear that polymer blends based on PLA/Starch for food packaging are very promising, already being part of the industries solutions, aiming to minimize the large volume of plastic waste of petrochemical origin discarded in nature. Obviously, as with any technology, more research is needed to further improve the performance of the films, and while much research has made great strides, there are still limitations that prevent the commercialization of these materials.\",\"PeriodicalId\":20353,\"journal\":{\"name\":\"Polymers from Renewable Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers from Renewable Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20412479231154924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231154924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

摘要

食品包装中使用的合成聚合物丢弃在环境中后会发生有限的降解,这是社会关注的一个主要问题。因此,工业界和学术界一直在寻求开发可生物降解和环保的一次性包装材料。食品工业的一个有趣的替代品是可生物降解的聚合物薄膜,这就是为什么不同的生物聚合物被用于生产可持续包装的原因。值得一提的是,可生物降解聚合物的使用是该行业解决环境问题最成功的创新之一。在可用的原材料中,从不同可再生资源中提取的淀粉非常有希望用于此目的,因为它的丰富性、与其他聚合物相比的低成本以及生产无毒薄膜的能力。然而,当单独使用时,纯淀粉具有许多局限性,这可以通过开发与其他聚合物(聚合物共混物)的混合物来克服,这些聚合物优选来自可再生和可生物降解的来源,例如聚乳酸(PLA)。在这种情况下,鉴于用不同类型的淀粉(木薯、玉米、豌豆、土豆、大米和小麦)和PLA基质生产的聚合物共混物的重要性,由于缺乏证明薄膜在食品中应用结果的文献综述,我们写了这篇文章。根据研究结果,很明显,用于食品包装的基于PLA/淀粉的聚合物混合物非常有前景,已经成为行业解决方案的一部分,旨在最大限度地减少自然界中丢弃的大量石化塑料垃圾。显然,与任何技术一样,还需要更多的研究来进一步提高薄膜的性能,尽管许多研究已经取得了长足的进步,但仍存在阻碍这些材料商业化的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymer blends of poly(lactic acid) and starch for the production of films applied in food packaging: A brief review
The limited degradation of synthetic polymers used in food packaging when discarded in the environment is a major concern for society. Therefore, industry and academia have sought to develop biodegradable and eco-friendly materials for single-use in packaging. An interesting alternative for the food industry is biodegradable polymeric films, which is why different biopolymers have been used in the production of sustainable packaging. It is worth mentioning that the use of biodegradable polymers is one of the most successful innovations in the industry to address issues related to the environment. Among the available raw materials, starch extracted from different renewable sources is very promising for this purpose, due to its abundance, low-cost compared to other polymers and ability to produce non-toxic films. However, when used alone, pure starch has many limitations, which can be overcome by developing a mixture with other polymers (polymer blends), preferably from renewable and biodegradable sources, such as poly(lactic acid) (PLA). In this context, the absence of literature reviews evidencing the results of the application of films in foods led us to write this article, given the importance of polymer blends produced with different types of starch (cassava, corn, pea, potato, rice and wheat) and the PLA matrix. According to the results, it is clear that polymer blends based on PLA/Starch for food packaging are very promising, already being part of the industries solutions, aiming to minimize the large volume of plastic waste of petrochemical origin discarded in nature. Obviously, as with any technology, more research is needed to further improve the performance of the films, and while much research has made great strides, there are still limitations that prevent the commercialization of these materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers from Renewable Resources
Polymers from Renewable Resources Materials Science-Polymers and Plastics
CiteScore
3.50
自引率
0.00%
发文量
15
期刊介绍: Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.
期刊最新文献
Polymers from renewable resources: Drug delivery platforms for transdermal delivery Lactic acid-facilitated surface modification of nanocellulose extracted from Borassus flabellifer leaves Recent advances in enhancing thermoelectric performance of polymeric materials Exploring the performance of bio-based PLA/PHB blends: A comprehensive analysis Production of nanocomposite films based on low density polyethylene/surface activated nanoperlite for modified atmosphere packaging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1