基于混合多项式LPV综合的航空发动机增益调度控制

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE International Journal of Turbo & Jet-Engines Pub Date : 2023-01-30 DOI:10.1515/tjj-2023-0001
Bin Shen, Lingfei Xiao, Zhuolin Ye
{"title":"基于混合多项式LPV综合的航空发动机增益调度控制","authors":"Bin Shen, Lingfei Xiao, Zhuolin Ye","doi":"10.1515/tjj-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract A full envelope LMI-based multi-region linear parameter-varying power controller is designed for a turbofan engine in this paper. According to the characteristics of aero-engine model, three scheduling variables are divided into two groups firstly, and then part of them are partitioned, rather than all scheduling variables are partitioned directly as the usual multi-region LPV control. The polynomial LPV model of aero-engine is established under a specific flight condition. An explicit LPV controller by gridding method based on parameter-dependent Lyapunov function is designed and we propose a method to eliminate the dependence of LPV controller on the derivative of scheduling parameter. The flight envelope of turbofan engine is divided into multiple sub-regions, and a mixing LPV control method with overlapping regions is proposed, which can guarantee stability and performance across the full envelope. Finally, the simulation results on the nonlinear component level model of a twin-spool turbofan engine verify our method.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gain scheduling control of aero-engine based on mixing polynomial LPV synthesis\",\"authors\":\"Bin Shen, Lingfei Xiao, Zhuolin Ye\",\"doi\":\"10.1515/tjj-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A full envelope LMI-based multi-region linear parameter-varying power controller is designed for a turbofan engine in this paper. According to the characteristics of aero-engine model, three scheduling variables are divided into two groups firstly, and then part of them are partitioned, rather than all scheduling variables are partitioned directly as the usual multi-region LPV control. The polynomial LPV model of aero-engine is established under a specific flight condition. An explicit LPV controller by gridding method based on parameter-dependent Lyapunov function is designed and we propose a method to eliminate the dependence of LPV controller on the derivative of scheduling parameter. The flight envelope of turbofan engine is divided into multiple sub-regions, and a mixing LPV control method with overlapping regions is proposed, which can guarantee stability and performance across the full envelope. Finally, the simulation results on the nonlinear component level model of a twin-spool turbofan engine verify our method.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2023-0001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

本文针对某涡扇发动机,设计了一种基于全包络LMI的多区域线性参数变功率控制器。根据航空发动机模型的特点,首先将三个调度变量分为两组,然后对其中的一部分进行划分,而不是像通常的多区域LPV控制那样直接对所有调度变量进行划分。建立了航空发动机在特定飞行条件下的多项式LPV模型。设计了一种基于参数相关李雅普诺夫函数的显式LPV控制器,并提出了一种消除LPV控制器对调度参数导数依赖性的方法。将涡扇发动机的飞行包络线划分为多个子区域,提出了一种区域重叠的混合LPV控制方法,该方法可以保证整个飞行包络线的稳定性和性能。最后,对一台双轴涡扇发动机非线性部件级模型的仿真结果验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gain scheduling control of aero-engine based on mixing polynomial LPV synthesis
Abstract A full envelope LMI-based multi-region linear parameter-varying power controller is designed for a turbofan engine in this paper. According to the characteristics of aero-engine model, three scheduling variables are divided into two groups firstly, and then part of them are partitioned, rather than all scheduling variables are partitioned directly as the usual multi-region LPV control. The polynomial LPV model of aero-engine is established under a specific flight condition. An explicit LPV controller by gridding method based on parameter-dependent Lyapunov function is designed and we propose a method to eliminate the dependence of LPV controller on the derivative of scheduling parameter. The flight envelope of turbofan engine is divided into multiple sub-regions, and a mixing LPV control method with overlapping regions is proposed, which can guarantee stability and performance across the full envelope. Finally, the simulation results on the nonlinear component level model of a twin-spool turbofan engine verify our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
期刊最新文献
Effect of inlet diameter on the flow structure and performance for aluminum-based water-jet engine Multi-objective optimization of the aerodynamic performance of butterfly-shaped film cooling holes in rocket thrust chamber Simple model of turbine-based combined cycle propulsion system and smooth mode transition Experimental study on flow field and combustion characteristics of V-gutter and integrated flameholders Research on performance seeking control of turbofan engine in minimum hot spot temperature mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1