{"title":"非环二氨基卡宾(ADC)及其在金属催化有机转化反应中的催化活性","authors":"A. Maurya, Rajpal Tyagi","doi":"10.1515/revic-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract Acyclic diaminocarbenes (ADCs)–Metal complex having strong donor ability and thermal stability led to extensive usability across every area of inorganic and organometallic chemistry. The unique properties of acyclic diaminocarbenes (ADCs) provide certain advantages over other carbene ligands and have the potential to make a great impact in catalysis. Further, the straightforward synthesis of M–ADCs (metal bound acyclic diaminocarbenes) complexes via metal-mediated reaction provides a wide range of well-defined metal carbene catalysts, which might inspire more researchers to devise unsymmetrically substituted, chiral, and novel acyclic carbene compounds. Although the above synthetic route is limited to a few late transition metals, but have great opportunities to expand the scope of this method. The application of M–ADCs complexes as a catalyst for several organic transformation reactions such as various cross-coupling reactions and asymmetric synthesis like hydroarylation, hydroazidation, hydroamination, cyclization and addition reactions which have shown comparable or even higher activities than the analogous M–NHCs based on all the reports presented. Recent findings of donor ability of several ADC ligands would be useful in fine-tuning the electronic properties, and then a catalyst with a certain combination of donicity and steric requirement could open new doors in catalytic reactivity. Thus, the objective of this review is to assess the recent growths that have been made in designing novel and chiral ADCs ligands and synthesizing ADCs–Metal complexes and to highlight catalytic activities of metal acyclic diaminocarbene complexes for cross-coupling reactions.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acyclic diaminocarbenes (ADCs) and their catalytic activity in metal catalysed organic transformation reactions\",\"authors\":\"A. Maurya, Rajpal Tyagi\",\"doi\":\"10.1515/revic-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Acyclic diaminocarbenes (ADCs)–Metal complex having strong donor ability and thermal stability led to extensive usability across every area of inorganic and organometallic chemistry. The unique properties of acyclic diaminocarbenes (ADCs) provide certain advantages over other carbene ligands and have the potential to make a great impact in catalysis. Further, the straightforward synthesis of M–ADCs (metal bound acyclic diaminocarbenes) complexes via metal-mediated reaction provides a wide range of well-defined metal carbene catalysts, which might inspire more researchers to devise unsymmetrically substituted, chiral, and novel acyclic carbene compounds. Although the above synthetic route is limited to a few late transition metals, but have great opportunities to expand the scope of this method. The application of M–ADCs complexes as a catalyst for several organic transformation reactions such as various cross-coupling reactions and asymmetric synthesis like hydroarylation, hydroazidation, hydroamination, cyclization and addition reactions which have shown comparable or even higher activities than the analogous M–NHCs based on all the reports presented. Recent findings of donor ability of several ADC ligands would be useful in fine-tuning the electronic properties, and then a catalyst with a certain combination of donicity and steric requirement could open new doors in catalytic reactivity. Thus, the objective of this review is to assess the recent growths that have been made in designing novel and chiral ADCs ligands and synthesizing ADCs–Metal complexes and to highlight catalytic activities of metal acyclic diaminocarbene complexes for cross-coupling reactions.\",\"PeriodicalId\":21162,\"journal\":{\"name\":\"Reviews in Inorganic Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revic-2022-0037\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2022-0037","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Acyclic diaminocarbenes (ADCs) and their catalytic activity in metal catalysed organic transformation reactions
Abstract Acyclic diaminocarbenes (ADCs)–Metal complex having strong donor ability and thermal stability led to extensive usability across every area of inorganic and organometallic chemistry. The unique properties of acyclic diaminocarbenes (ADCs) provide certain advantages over other carbene ligands and have the potential to make a great impact in catalysis. Further, the straightforward synthesis of M–ADCs (metal bound acyclic diaminocarbenes) complexes via metal-mediated reaction provides a wide range of well-defined metal carbene catalysts, which might inspire more researchers to devise unsymmetrically substituted, chiral, and novel acyclic carbene compounds. Although the above synthetic route is limited to a few late transition metals, but have great opportunities to expand the scope of this method. The application of M–ADCs complexes as a catalyst for several organic transformation reactions such as various cross-coupling reactions and asymmetric synthesis like hydroarylation, hydroazidation, hydroamination, cyclization and addition reactions which have shown comparable or even higher activities than the analogous M–NHCs based on all the reports presented. Recent findings of donor ability of several ADC ligands would be useful in fine-tuning the electronic properties, and then a catalyst with a certain combination of donicity and steric requirement could open new doors in catalytic reactivity. Thus, the objective of this review is to assess the recent growths that have been made in designing novel and chiral ADCs ligands and synthesizing ADCs–Metal complexes and to highlight catalytic activities of metal acyclic diaminocarbene complexes for cross-coupling reactions.
期刊介绍:
Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process.
Topics:
-Main group chemistry-
Transition metal chemistry-
Coordination chemistry-
Organometallic chemistry-
Catalysis-
Bioinorganic chemistry-
Supramolecular chemistry-
Ionic liquids