广义单模态效应及其处理方法

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Functional Programming Pub Date : 2020-07-28 DOI:10.1017/S0956796820000106
Ruben P. Pieters, Exequiel Rivas, T. Schrijvers
{"title":"广义单模态效应及其处理方法","authors":"Ruben P. Pieters, Exequiel Rivas, T. Schrijvers","doi":"10.1017/S0956796820000106","DOIUrl":null,"url":null,"abstract":"Abstract Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers is limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows as well as monads. For this purpose, we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example, handling applicative computations with monadic handlers. We motivate and present these handler interfaces in the context of build systems. Tasks in a build system are represented by a free computation and their interpretation as a handler. This use case is based on the work of Mokhov et al. [(2018). PACMPL2(ICFP), 79:1–79:29.].","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0956796820000106","citationCount":"3","resultStr":"{\"title\":\"Generalized monoidal effects and handlers\",\"authors\":\"Ruben P. Pieters, Exequiel Rivas, T. Schrijvers\",\"doi\":\"10.1017/S0956796820000106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers is limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows as well as monads. For this purpose, we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example, handling applicative computations with monadic handlers. We motivate and present these handler interfaces in the context of build systems. Tasks in a build system are represented by a free computation and their interpretation as a handler. This use case is based on the work of Mokhov et al. [(2018). PACMPL2(ICFP), 79:1–79:29.].\",\"PeriodicalId\":15874,\"journal\":{\"name\":\"Journal of Functional Programming\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0956796820000106\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0956796820000106\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0956796820000106","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

摘要代数效应和处理程序是一种方便的方法,可以用原始效应运算构造一元效应,并将语法与这些运算的解释分离开来。然而,传统处理程序的范围是有限的,因为并非所有的副作用本质上都是单一的。本文将代数效应和处理程序的概念从单胚推广到广义单胚,其中特别涵盖了应用函子和箭头以及单胚。为此,我们将范畴理论基础从自由代数转换为自由幺半群。此外,我们还展示了lax单体函子如何在不同的计算类中重用处理程序和程序,例如,使用单体处理程序处理应用性计算。我们在构建系统的上下文中激发并呈现这些处理程序接口。构建系统中的任务由自由计算和它们作为处理程序的解释来表示。该用例基于Mokhov等人的工作。[(2018).PACML2(ICFP),79:1–79:29]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized monoidal effects and handlers
Abstract Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers is limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows as well as monads. For this purpose, we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example, handling applicative computations with monadic handlers. We motivate and present these handler interfaces in the context of build systems. Tasks in a build system are represented by a free computation and their interpretation as a handler. This use case is based on the work of Mokhov et al. [(2018). PACMPL2(ICFP), 79:1–79:29.].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Functional Programming
Journal of Functional Programming 工程技术-计算机:软件工程
CiteScore
1.70
自引率
0.00%
发文量
9
审稿时长
>12 weeks
期刊介绍: Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.
期刊最新文献
Signature restriction for polymorphic algebraic effects Asymptotic speedup via effect handlers Static Blame for gradual typing Knuth–Morris–Pratt illustrated Sparcl: A language for partially invertible computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1