孟加拉国公共部门创新成果驱动的可持续发展:应用动态自回归分布式滞后模拟和基于核的正则化最小二乘机器学习算法

IF 1.9 2区 社会学 Q2 POLITICAL SCIENCE Journal of Public Policy Pub Date : 2022-12-12 DOI:10.1017/S0143814X22000368
Md. Monirul Islam, M. Tareque
{"title":"孟加拉国公共部门创新成果驱动的可持续发展:应用动态自回归分布式滞后模拟和基于核的正则化最小二乘机器学习算法","authors":"Md. Monirul Islam, M. Tareque","doi":"10.1017/S0143814X22000368","DOIUrl":null,"url":null,"abstract":"Abstract This research investigates the role of public sector innovation outcomes, e.g. trademark innovation, information and communication technology (ICT), renewable energy, and governance, in the sustainable development of Bangladesh during 1980–2019. Utilising the dynamic autoregressive distributed lag (DARDL) simulation approach, this study divulges a favourable long-term influencing profile of public sector innovation outcomes, i.e. trademark innovation, ICT, and renewable energy on sustainable development, while governance has a heterogeneous impact. Besides, the findings from the DARDL simulations area plots display 10% counterfactual shocks to the public sector innovation outcomes on sustainable development. Furthermore, the Kernel-based regularised least square machine learning algorithm approach used in the study examines the marginal effects of the public sector innovation outcomes on sustainable development for robust findings. Therefore, the policy suggestions are solely concerned with the public sector’s adoption of more innovation dynamics through appropriate policy formulation.","PeriodicalId":47578,"journal":{"name":"Journal of Public Policy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Public sector innovation outcome-driven sustainable development in Bangladesh: applying the dynamic autoregressive distributed lag simulations and Kernel-based regularised least square machine learning algorithm approaches\",\"authors\":\"Md. Monirul Islam, M. Tareque\",\"doi\":\"10.1017/S0143814X22000368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This research investigates the role of public sector innovation outcomes, e.g. trademark innovation, information and communication technology (ICT), renewable energy, and governance, in the sustainable development of Bangladesh during 1980–2019. Utilising the dynamic autoregressive distributed lag (DARDL) simulation approach, this study divulges a favourable long-term influencing profile of public sector innovation outcomes, i.e. trademark innovation, ICT, and renewable energy on sustainable development, while governance has a heterogeneous impact. Besides, the findings from the DARDL simulations area plots display 10% counterfactual shocks to the public sector innovation outcomes on sustainable development. Furthermore, the Kernel-based regularised least square machine learning algorithm approach used in the study examines the marginal effects of the public sector innovation outcomes on sustainable development for robust findings. Therefore, the policy suggestions are solely concerned with the public sector’s adoption of more innovation dynamics through appropriate policy formulation.\",\"PeriodicalId\":47578,\"journal\":{\"name\":\"Journal of Public Policy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Public Policy\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1017/S0143814X22000368\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Public Policy","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1017/S0143814X22000368","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究调查了公共部门创新成果,如商标创新、信息和通信技术(ICT)、可再生能源和治理,在1980-2019年孟加拉国可持续发展中的作用。利用动态自回归分布滞后(DARDL)模拟方法,本研究揭示了公共部门创新成果(即商标创新、信息通信技术和可再生能源)对可持续发展的有利长期影响,而治理具有异质性影响。此外,DARDL模拟区域图的结果显示,公共部门创新成果对可持续发展产生了10%的反事实冲击。此外,研究中使用的基于核的正则化最小二乘机器学习算法方法考察了公共部门创新成果对可持续发展的边际影响,以获得稳健的结果。因此,政策建议只关注公共部门通过适当的政策制定,采用更多的创新动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Public sector innovation outcome-driven sustainable development in Bangladesh: applying the dynamic autoregressive distributed lag simulations and Kernel-based regularised least square machine learning algorithm approaches
Abstract This research investigates the role of public sector innovation outcomes, e.g. trademark innovation, information and communication technology (ICT), renewable energy, and governance, in the sustainable development of Bangladesh during 1980–2019. Utilising the dynamic autoregressive distributed lag (DARDL) simulation approach, this study divulges a favourable long-term influencing profile of public sector innovation outcomes, i.e. trademark innovation, ICT, and renewable energy on sustainable development, while governance has a heterogeneous impact. Besides, the findings from the DARDL simulations area plots display 10% counterfactual shocks to the public sector innovation outcomes on sustainable development. Furthermore, the Kernel-based regularised least square machine learning algorithm approach used in the study examines the marginal effects of the public sector innovation outcomes on sustainable development for robust findings. Therefore, the policy suggestions are solely concerned with the public sector’s adoption of more innovation dynamics through appropriate policy formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
38
期刊介绍: The Journal of Public Policy applies social science theories and concepts to significant political, economic and social issues and to the ways in which public policies are made. Its articles deal with topics of concern to public policy scholars in America, Europe, Japan and other advanced industrial nations. The journal often publishes articles that cut across disciplines, such as environmental issues, international political economy, regulatory policy and European Union processes. Its peer reviewers come from up to a dozen social science disciplines and countries across three continents, thus ensuring both analytic rigour and accuracy in reference to national and policy context.
期刊最新文献
Does exposure to democracy decrease health inequality? Toward a theory of minority-party influence in the U.S. Congress: whip counts, amendment votes, and minority leverage in the house PUP volume 43 issue 3 Cover and Front matter PUP volume 43 issue 3 Cover and Back matter Policy entrepreneurs and problem definition: the case of European student mobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1