横向布置惯性导航系统中椭球和虚球模型的分析与讨论

IF 1.9 4区 工程技术 Q2 ENGINEERING, MARINE Journal of Navigation Pub Date : 2023-01-01 DOI:10.1017/S037346332200056X
Z. Wen, Hongwei Bian, Heng Ma, Rongying Wang
{"title":"横向布置惯性导航系统中椭球和虚球模型的分析与讨论","authors":"Z. Wen, Hongwei Bian, Heng Ma, Rongying Wang","doi":"10.1017/S037346332200056X","DOIUrl":null,"url":null,"abstract":"Abstract Transverse arrangement is one of the main methods used in the polar inertial navigation system (INS). In the traditional algorithm, the calculation of using the earth ellipsoid model is complex, while using the earth sphere model cannot satisfy a high-accuracy application. Therefore, an approach based on the virtual sphere model is proposed, which has been proved in simulation experiments to reduce the computational complexity and maintain the same accuracy as the ellipsoid algorithm, but its accuracy has not yet been proved in theory. Starting from the basic principles of the ellipsoid and virtual sphere model algorithm, this paper compares the key formulations of the two. Finally, it is proved that the two arrangements are actually the same.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"103 - 112"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Discussion on Ellipsoidal and virtual sphere models used for transverse arrangement INS\",\"authors\":\"Z. Wen, Hongwei Bian, Heng Ma, Rongying Wang\",\"doi\":\"10.1017/S037346332200056X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Transverse arrangement is one of the main methods used in the polar inertial navigation system (INS). In the traditional algorithm, the calculation of using the earth ellipsoid model is complex, while using the earth sphere model cannot satisfy a high-accuracy application. Therefore, an approach based on the virtual sphere model is proposed, which has been proved in simulation experiments to reduce the computational complexity and maintain the same accuracy as the ellipsoid algorithm, but its accuracy has not yet been proved in theory. Starting from the basic principles of the ellipsoid and virtual sphere model algorithm, this paper compares the key formulations of the two. Finally, it is proved that the two arrangements are actually the same.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"76 1\",\"pages\":\"103 - 112\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S037346332200056X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S037346332200056X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

摘要横向排列是极坐标惯性导航系统的主要方法之一。在传统算法中,使用地球椭球模型计算复杂,而使用地球球体模型无法满足高精度的应用。因此,提出了一种基于虚拟球体模型的方法,该方法在降低计算复杂度的同时保持了与椭球体算法相同的精度,但其精度在理论上尚未得到证实。本文从椭球和虚球模型算法的基本原理出发,对两者的关键公式进行了比较。最后,证明了这两种排列实际上是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and Discussion on Ellipsoidal and virtual sphere models used for transverse arrangement INS
Abstract Transverse arrangement is one of the main methods used in the polar inertial navigation system (INS). In the traditional algorithm, the calculation of using the earth ellipsoid model is complex, while using the earth sphere model cannot satisfy a high-accuracy application. Therefore, an approach based on the virtual sphere model is proposed, which has been proved in simulation experiments to reduce the computational complexity and maintain the same accuracy as the ellipsoid algorithm, but its accuracy has not yet been proved in theory. Starting from the basic principles of the ellipsoid and virtual sphere model algorithm, this paper compares the key formulations of the two. Finally, it is proved that the two arrangements are actually the same.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Navigation
Journal of Navigation 工程技术-工程:海洋
CiteScore
6.10
自引率
4.20%
发文量
59
审稿时长
4.6 months
期刊介绍: The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.
期刊最新文献
The supine moving apprehension test-Reliability and validity among healthy individuals and patients with anterior shoulder instability. GPS + Galileo + BDS-3 medium to long-range single-baseline RTK: an alternative for network-based RTK? Compass adjustment by GPS (or any other GNSS receiver) and a single visual reference Navigation pattern extraction from AIS trajectory big data via topic model The Impact of Vaccination Among Hospitalized Patients with the Diagnosis of COVID-19.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1