基于量化和随机丢包的延迟离散Fornasini-Marchesini模型的可控性

IF 2.6 4区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Mathematical Modelling of Natural Phenomena Pub Date : 2022-08-17 DOI:10.1051/mmnp/2022040
Adnen Adnen
{"title":"基于量化和随机丢包的延迟离散Fornasini-Marchesini模型的可控性","authors":"Adnen Adnen","doi":"10.1051/mmnp/2022040","DOIUrl":null,"url":null,"abstract":"This research is devoted to Fornasnisi-Marchesini model (FM). More precisely, the investigation of the control problem for the second model discrete-time FM. Random packet dropouts, time delays and quantization are taken into consideration in the feedback control problem simultaneously. Measured signals are quantized before being communicated. A logarithmic quantizer is utilized and quantized signal measurements are handled by a sector bound method. The random packet dropouts are modeled as a Bernoulli process. A control law model which depends on packet dropouts and quantization is formulated. Notably, we lighten the assumptions by using the Schur complement. Besides, both a state feedback controller and an observer-based output feedback controller are designed to ensure corresponding closed-loop systems asymptotically stability. Sufficient conditions on mean square asymptotic stability in terms of LMIs have been obtained. Finally, two numerical example show the feasibility of our theoretical results.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Controllability of Delayed Discret Fornasini-Marchesini Model via Quantization and Random Packet Dropouts\",\"authors\":\"Adnen Adnen\",\"doi\":\"10.1051/mmnp/2022040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is devoted to Fornasnisi-Marchesini model (FM). More precisely, the investigation of the control problem for the second model discrete-time FM. Random packet dropouts, time delays and quantization are taken into consideration in the feedback control problem simultaneously. Measured signals are quantized before being communicated. A logarithmic quantizer is utilized and quantized signal measurements are handled by a sector bound method. The random packet dropouts are modeled as a Bernoulli process. A control law model which depends on packet dropouts and quantization is formulated. Notably, we lighten the assumptions by using the Schur complement. Besides, both a state feedback controller and an observer-based output feedback controller are designed to ensure corresponding closed-loop systems asymptotically stability. Sufficient conditions on mean square asymptotic stability in terms of LMIs have been obtained. Finally, two numerical example show the feasibility of our theoretical results.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2022040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

本研究致力于Fornasnisi-Marchesini模型(FM)。更确切地说,研究了第二模型离散时间调频的控制问题。反馈控制问题同时考虑了随机丢包、时延和量化。测量的信号在被通信之前被量化。使用对数量化器,并且通过扇区定界方法来处理量化的信号测量。随机分组丢弃被建模为伯努利过程。建立了一个依赖于丢包率和量化的控制律模型。值得注意的是,我们通过使用舒尔补码来减轻假设。此外,还设计了状态反馈控制器和基于观测器的输出反馈控制器,以确保相应的闭环系统渐近稳定。得到了LMIs的均方渐近稳定的充分条件。最后,通过两个算例验证了理论结果的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controllability of Delayed Discret Fornasini-Marchesini Model via Quantization and Random Packet Dropouts
This research is devoted to Fornasnisi-Marchesini model (FM). More precisely, the investigation of the control problem for the second model discrete-time FM. Random packet dropouts, time delays and quantization are taken into consideration in the feedback control problem simultaneously. Measured signals are quantized before being communicated. A logarithmic quantizer is utilized and quantized signal measurements are handled by a sector bound method. The random packet dropouts are modeled as a Bernoulli process. A control law model which depends on packet dropouts and quantization is formulated. Notably, we lighten the assumptions by using the Schur complement. Besides, both a state feedback controller and an observer-based output feedback controller are designed to ensure corresponding closed-loop systems asymptotically stability. Sufficient conditions on mean square asymptotic stability in terms of LMIs have been obtained. Finally, two numerical example show the feasibility of our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
5.20
自引率
0.00%
发文量
46
审稿时长
6-12 weeks
期刊介绍: The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues. Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.
期刊最新文献
Nitric oxide transport in carotid bifurcation after different stent interventions: a numerical study COMBINED HORMONE AND BRACHY THERAPIES FOR THE TREATMENT OF PROSTATE CANCER Thermodynamical Modeling of Multiphase Flow System with Surface Tension and Flow On the epidemiological evolution of colistin-resistant Acinetobacter baumannii in the city of Valencia: an agent-based modelling approach Influence of the age structure on the stability in a tumor-immune model for chronic myeloid leukemia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1