聚变放射性废物管理风险识别与评估框架的初步研究

IF 1 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY Science and Technology of Nuclear Installations Pub Date : 2022-05-17 DOI:10.1155/2022/4870208
D. Guo, Jinkai Wang, Chao Chen, Dongqin Xia, Nuo Yong, Daochuan Ge
{"title":"聚变放射性废物管理风险识别与评估框架的初步研究","authors":"D. Guo, Jinkai Wang, Chao Chen, Dongqin Xia, Nuo Yong, Daochuan Ge","doi":"10.1155/2022/4870208","DOIUrl":null,"url":null,"abstract":"Fusion reactors are expected to be safer, more environmentally friendly, and to have a lower nuclear proliferation risk, compared with other nuclear energy systems. However, it is widely recognized that a large amount of radioactive materials will be produced by a fusion reactor. Therefore, it is important to fully understand the overall radiation risk level of fusion radioactive wastes (radwaste) compared with existing nuclear energy systems. Studies on the treatment of the fusion radwaste have been currently focused on three ultimate options: clearance, recycling, and disposal by activation assessment of radioactive materials from the operation and decommissioning of fusion reactors. However, the radiation risk in the management of fusion radwaste, especially in the final disposal, was seldom studied. Based on the comparative analysis of fusion radioactive waste with ITER and fission reactors (e.g., pressurized water reactor, PWR), this paper tries to discuss how to determine the radiation risk in the process of fusion radwaste management on the premise of the current feasible industrial technology. On this basis, a risk assessment framework for repository disposal under normal degradation and external events is proposed.","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preliminary Study on Risk Identification and Assessment Framework for Fusion Radioactive Waste Management\",\"authors\":\"D. Guo, Jinkai Wang, Chao Chen, Dongqin Xia, Nuo Yong, Daochuan Ge\",\"doi\":\"10.1155/2022/4870208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fusion reactors are expected to be safer, more environmentally friendly, and to have a lower nuclear proliferation risk, compared with other nuclear energy systems. However, it is widely recognized that a large amount of radioactive materials will be produced by a fusion reactor. Therefore, it is important to fully understand the overall radiation risk level of fusion radioactive wastes (radwaste) compared with existing nuclear energy systems. Studies on the treatment of the fusion radwaste have been currently focused on three ultimate options: clearance, recycling, and disposal by activation assessment of radioactive materials from the operation and decommissioning of fusion reactors. However, the radiation risk in the management of fusion radwaste, especially in the final disposal, was seldom studied. Based on the comparative analysis of fusion radioactive waste with ITER and fission reactors (e.g., pressurized water reactor, PWR), this paper tries to discuss how to determine the radiation risk in the process of fusion radwaste management on the premise of the current feasible industrial technology. On this basis, a risk assessment framework for repository disposal under normal degradation and external events is proposed.\",\"PeriodicalId\":21629,\"journal\":{\"name\":\"Science and Technology of Nuclear Installations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Nuclear Installations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/4870208\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/4870208","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

与其他核能系统相比,聚变反应堆预计更安全、更环保,核扩散风险更低。然而,人们普遍认为,聚变反应堆将产生大量放射性物质。因此,与现有核能系统相比,充分了解聚变放射性废物(放射性废物)的总体辐射风险水平很重要。目前,对聚变放射性废物处理的研究主要集中在三个最终选择上:清除、回收和通过对聚变反应堆运行和退役产生的放射性物质进行活化评估进行处置。然而,对聚变放射性废物管理中的辐射风险,特别是在最终处置中的风险,很少进行研究。本文通过对聚变放射性废物与ITER和裂变反应堆(如压水堆、压水堆)的比较分析,试图探讨在当前可行的工业技术的前提下,如何确定聚变放射性废物管理过程中的辐射风险。在此基础上,提出了在正常退化和外部事件下处置库的风险评估框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary Study on Risk Identification and Assessment Framework for Fusion Radioactive Waste Management
Fusion reactors are expected to be safer, more environmentally friendly, and to have a lower nuclear proliferation risk, compared with other nuclear energy systems. However, it is widely recognized that a large amount of radioactive materials will be produced by a fusion reactor. Therefore, it is important to fully understand the overall radiation risk level of fusion radioactive wastes (radwaste) compared with existing nuclear energy systems. Studies on the treatment of the fusion radwaste have been currently focused on three ultimate options: clearance, recycling, and disposal by activation assessment of radioactive materials from the operation and decommissioning of fusion reactors. However, the radiation risk in the management of fusion radwaste, especially in the final disposal, was seldom studied. Based on the comparative analysis of fusion radioactive waste with ITER and fission reactors (e.g., pressurized water reactor, PWR), this paper tries to discuss how to determine the radiation risk in the process of fusion radwaste management on the premise of the current feasible industrial technology. On this basis, a risk assessment framework for repository disposal under normal degradation and external events is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology of Nuclear Installations
Science and Technology of Nuclear Installations NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.
期刊最新文献
Assessment of Radiation Dose Associated with the Atmospheric Release of 41Ar from the TRIGA Mark-II Research Reactor in Bangladesh Design Change and Operational Consideration of the HVAC System during Nuclear Power Plant Decommissioning Accuracy Evaluation of Monte Carlo Simulation Results Using ENDF/B-VIII.0 and JENDL-5 Libraries for 10 MWth Micro Heat Pipe-Cooled Reactor Effect of Photomultiplier Tube Voltage on the Performance of Sealed NaI (Tl) Scintillator Detectors Overview on Radiation Damage Effects and Protection Techniques in Microelectronic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1