P. Lei, Ri Yu, Yaqi Kong, S. Bertilsson, M. Tsui, Tao Jiang, Jiating Zhao, Yurong Liu, Rinklebe Joerg, Huan Zhong
{"title":"正确解释代谢抑制结果以鉴定初级汞甲基化微生物","authors":"P. Lei, Ri Yu, Yaqi Kong, S. Bertilsson, M. Tsui, Tao Jiang, Jiating Zhao, Yurong Liu, Rinklebe Joerg, Huan Zhong","doi":"10.1080/10643389.2023.2183072","DOIUrl":null,"url":null,"abstract":"Abstract Distinguishing the respective contributions of various microbes to methylmercury (MeHg) production is critical for predicting MeHg bioaccumulation and exposure risk. Metabolic inhibitors have been commonly used to block the activity of specific microbial groups and identify primary Hg methylating microbes. By reviewing literatures and our empirical data, we demonstrate how multiple factors, including (1) the addition of inappropriate amounts of inhibitors, (2) a tendency to overlook microbial syntrophy, and (3) the absence of comprehensive proxy systems of Hg methylation, would impact result interpretation of this approach. We thus suggest that the design of inhibition assays should consider the environmental properties, e.g., background levels of electron acceptors, concentrations of metabolic substrates, and abundances of Hg methylating microbes. We also recommend that inhibitors should be added at multiple concentrations and that observed changes in Hg methylation should be assessed with comprehensive indicators. Revealing the key factors responsible for the improper usage of this method and inadequate interpretation of the results would help optimize inhibition assays for robust predictions of MeHg production in nature. Graphical Abstract","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1757 - 1773"},"PeriodicalIF":11.4000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properly interpret metabolic inhibition results to identify primary mercury methylating microbes\",\"authors\":\"P. Lei, Ri Yu, Yaqi Kong, S. Bertilsson, M. Tsui, Tao Jiang, Jiating Zhao, Yurong Liu, Rinklebe Joerg, Huan Zhong\",\"doi\":\"10.1080/10643389.2023.2183072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Distinguishing the respective contributions of various microbes to methylmercury (MeHg) production is critical for predicting MeHg bioaccumulation and exposure risk. Metabolic inhibitors have been commonly used to block the activity of specific microbial groups and identify primary Hg methylating microbes. By reviewing literatures and our empirical data, we demonstrate how multiple factors, including (1) the addition of inappropriate amounts of inhibitors, (2) a tendency to overlook microbial syntrophy, and (3) the absence of comprehensive proxy systems of Hg methylation, would impact result interpretation of this approach. We thus suggest that the design of inhibition assays should consider the environmental properties, e.g., background levels of electron acceptors, concentrations of metabolic substrates, and abundances of Hg methylating microbes. We also recommend that inhibitors should be added at multiple concentrations and that observed changes in Hg methylation should be assessed with comprehensive indicators. Revealing the key factors responsible for the improper usage of this method and inadequate interpretation of the results would help optimize inhibition assays for robust predictions of MeHg production in nature. Graphical Abstract\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"53 1\",\"pages\":\"1757 - 1773\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2023.2183072\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2183072","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Abstract Distinguishing the respective contributions of various microbes to methylmercury (MeHg) production is critical for predicting MeHg bioaccumulation and exposure risk. Metabolic inhibitors have been commonly used to block the activity of specific microbial groups and identify primary Hg methylating microbes. By reviewing literatures and our empirical data, we demonstrate how multiple factors, including (1) the addition of inappropriate amounts of inhibitors, (2) a tendency to overlook microbial syntrophy, and (3) the absence of comprehensive proxy systems of Hg methylation, would impact result interpretation of this approach. We thus suggest that the design of inhibition assays should consider the environmental properties, e.g., background levels of electron acceptors, concentrations of metabolic substrates, and abundances of Hg methylating microbes. We also recommend that inhibitors should be added at multiple concentrations and that observed changes in Hg methylation should be assessed with comprehensive indicators. Revealing the key factors responsible for the improper usage of this method and inadequate interpretation of the results would help optimize inhibition assays for robust predictions of MeHg production in nature. Graphical Abstract
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.