γ辐照对冻干浆果微生物和营养特性的影响

IF 0.7 4区 物理与天体物理 Q4 CHEMISTRY, INORGANIC & NUCLEAR Nukleonika Pub Date : 2021-11-25 DOI:10.2478/nuka-2021-0032
S. Mašić, Ivica Vujčić
{"title":"γ辐照对冻干浆果微生物和营养特性的影响","authors":"S. Mašić, Ivica Vujčić","doi":"10.2478/nuka-2021-0032","DOIUrl":null,"url":null,"abstract":"Abstract Lyophilization or freeze-drying is the technique of removing ice or other frozen solvents from a material through sublimation and the removal of bound water molecules through the process of desorption. Drying occurs in an absolute vacuum at temperatures from −40°C to −50°C. This technique is often used for the conservation of fruits, especially berries. During this process, the water changes from frozen to gaseous, with no thawing. Due to low temperatures and the high vacuum, most microorganisms are rendered inactive during the lyophilization process. However, if there is a necessity to destroy all microorganisms from treated food, subsequent irradiation with gamma rays is an appropriate method. This paper investigated the influence of different doses of gamma radiation on lyophilized berries’ microbiological characteristics. It was shown that the radiation dose of 7 kGy is sufficient to eliminate the total number of microorganisms (excluding molds) to the extent that the number falls below the permitted limit according t o the law on the microbiological safety of foodstuffs of the Republic of Serbia, and 5 kGy is enough for molds to be rendered inactive. It was also concluded that gamma irradiation does not affect the nutritional value of lyophilized berries.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of gamma irradiation on microbiological and nutritional properties of the freeze-dried berries\",\"authors\":\"S. Mašić, Ivica Vujčić\",\"doi\":\"10.2478/nuka-2021-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Lyophilization or freeze-drying is the technique of removing ice or other frozen solvents from a material through sublimation and the removal of bound water molecules through the process of desorption. Drying occurs in an absolute vacuum at temperatures from −40°C to −50°C. This technique is often used for the conservation of fruits, especially berries. During this process, the water changes from frozen to gaseous, with no thawing. Due to low temperatures and the high vacuum, most microorganisms are rendered inactive during the lyophilization process. However, if there is a necessity to destroy all microorganisms from treated food, subsequent irradiation with gamma rays is an appropriate method. This paper investigated the influence of different doses of gamma radiation on lyophilized berries’ microbiological characteristics. It was shown that the radiation dose of 7 kGy is sufficient to eliminate the total number of microorganisms (excluding molds) to the extent that the number falls below the permitted limit according t o the law on the microbiological safety of foodstuffs of the Republic of Serbia, and 5 kGy is enough for molds to be rendered inactive. It was also concluded that gamma irradiation does not affect the nutritional value of lyophilized berries.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2021-0032\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2021-0032","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1

摘要

摘要冷冻干燥是指通过升华从材料中去除冰或其他冷冻溶剂,并通过解吸过程去除结合的水分子的技术。干燥在−40°C至−50°C的绝对真空中进行。这种技术通常用于保护水果,尤其是浆果。在这个过程中,水从冻结变成气态,没有融化。由于低温和高真空度,大多数微生物在冷冻干燥过程中变得不活跃。然而,如果有必要销毁处理过的食物中的所有微生物,随后用伽马射线照射是一种合适的方法。本文研究了不同剂量的γ辐射对冻干浆果微生物特性的影响。研究表明,7 kGy的辐射剂量足以消除微生物总数(不包括霉菌),只要微生物总数低于塞尔维亚共和国食品微生物安全法允许的限度,5 kGy就足以使霉菌失去活性。还得出结论,伽马射线照射不会影响冻干浆果的营养价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of gamma irradiation on microbiological and nutritional properties of the freeze-dried berries
Abstract Lyophilization or freeze-drying is the technique of removing ice or other frozen solvents from a material through sublimation and the removal of bound water molecules through the process of desorption. Drying occurs in an absolute vacuum at temperatures from −40°C to −50°C. This technique is often used for the conservation of fruits, especially berries. During this process, the water changes from frozen to gaseous, with no thawing. Due to low temperatures and the high vacuum, most microorganisms are rendered inactive during the lyophilization process. However, if there is a necessity to destroy all microorganisms from treated food, subsequent irradiation with gamma rays is an appropriate method. This paper investigated the influence of different doses of gamma radiation on lyophilized berries’ microbiological characteristics. It was shown that the radiation dose of 7 kGy is sufficient to eliminate the total number of microorganisms (excluding molds) to the extent that the number falls below the permitted limit according t o the law on the microbiological safety of foodstuffs of the Republic of Serbia, and 5 kGy is enough for molds to be rendered inactive. It was also concluded that gamma irradiation does not affect the nutritional value of lyophilized berries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nukleonika
Nukleonika 物理-无机化学与核化学
CiteScore
2.00
自引率
0.00%
发文量
5
审稿时长
4-8 weeks
期刊介绍: "Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences. The fields of research include: radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.
期刊最新文献
Gamma radiation shielding properties of (x)Bi2O3–(0.5 – x)ZnO–0.2B2O3–0.3SiO2 glass system No evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 nanoparticles in three mammalian cell lines despite the initial reduction of cellular mitochondrial activity Comparison of the neutronic properties of the (Th-233U)O2, (Th-233U)C, and (Th-233U)N fuels in small long-life PWR cores with 300, 400, and 500 MWth of power Professor W. Alexander Van Hook (1936-2023) Numerical studies of plasma edge in W7-X with 3D FINDIF code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1