镁和氢在镁橄榄石中的快速各向异性扩散

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2022-07-25 DOI:10.1007/s00269-022-01204-7
Joshua M. R. Muir, Feiwu Zhang, Andrew M. Walker
{"title":"镁和氢在镁橄榄石中的快速各向异性扩散","authors":"Joshua M. R. Muir,&nbsp;Feiwu Zhang,&nbsp;Andrew M. Walker","doi":"10.1007/s00269-022-01204-7","DOIUrl":null,"url":null,"abstract":"<div><p>Adding hydrogen to forsterite strongly increases the diffusion rate of Mg, but the reason for this is unclear. As Mg diffusion in forsterite can influence its electrical conductivity, understanding this process is important. In this study we use density functional theory to predict the diffusivity of H-bearing Mg vacancies and we find that they are around 1000 times slower than H-free Mg vacancies. H-bearing Mg vacancies are many orders of magnitude more concentrated than H-free Mg vacancies, however, and diffusion is a combination of diffusivity and defect concentration. Overall, the presence of hydrated Mg vacancies is predicted to cause a large (multiple orders of magnitude) increase in both diffusion rate and diffusional anisotropy with a strong preference for diffusion in the [001] direction predicted. In models of experimental data, the effect of water concentration on diffusion is often described by a constant best-fitting exponent. Our results suggest that this exponent will vary between 0.5 and 1.6 across common experimental conditions with pressure decreasing and temperature increasing this exponent. These results suggest that Mg diffusion in forsterite could vary considerably throughout upper mantle conditions in ways that cannot be captured with a simple single-exponent model. Comparisons to measures of hydrogen diffusivity suggest that the diffusion of hydrated Mg vacancies also controls the diffusion of hydrogen in (iron-free) forsterite and that our conclusions above also apply to hydrogen diffusion rates and anisotropy. We also find that cation diffusivity likely cannot explain experimental measurements of the effect of water on electrical conductivity in olivine.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast anisotropic Mg and H diffusion in wet forsterite\",\"authors\":\"Joshua M. R. Muir,&nbsp;Feiwu Zhang,&nbsp;Andrew M. Walker\",\"doi\":\"10.1007/s00269-022-01204-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adding hydrogen to forsterite strongly increases the diffusion rate of Mg, but the reason for this is unclear. As Mg diffusion in forsterite can influence its electrical conductivity, understanding this process is important. In this study we use density functional theory to predict the diffusivity of H-bearing Mg vacancies and we find that they are around 1000 times slower than H-free Mg vacancies. H-bearing Mg vacancies are many orders of magnitude more concentrated than H-free Mg vacancies, however, and diffusion is a combination of diffusivity and defect concentration. Overall, the presence of hydrated Mg vacancies is predicted to cause a large (multiple orders of magnitude) increase in both diffusion rate and diffusional anisotropy with a strong preference for diffusion in the [001] direction predicted. In models of experimental data, the effect of water concentration on diffusion is often described by a constant best-fitting exponent. Our results suggest that this exponent will vary between 0.5 and 1.6 across common experimental conditions with pressure decreasing and temperature increasing this exponent. These results suggest that Mg diffusion in forsterite could vary considerably throughout upper mantle conditions in ways that cannot be captured with a simple single-exponent model. Comparisons to measures of hydrogen diffusivity suggest that the diffusion of hydrated Mg vacancies also controls the diffusion of hydrogen in (iron-free) forsterite and that our conclusions above also apply to hydrogen diffusion rates and anisotropy. We also find that cation diffusivity likely cannot explain experimental measurements of the effect of water on electrical conductivity in olivine.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"49 8\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-022-01204-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01204-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

向刚石中加入氢能显著提高Mg的扩散速率,但其原因尚不清楚。由于镁在橄榄石中的扩散会影响其导电性,因此了解这一过程非常重要。在这项研究中,我们使用密度泛函理论来预测含h Mg空位的扩散率,我们发现它们比不含h的Mg空位慢1000倍左右。含h的Mg空位比不含h的Mg空位集中了许多个数量级,而扩散是扩散率和缺陷浓度的结合。总的来说,预计水合Mg空位的存在会导致扩散速率和扩散各向异性的大幅(多个数量级)增加,并强烈倾向于向预测的[001]方向扩散。在实验数据模型中,水浓度对扩散的影响通常用一个常数的最佳拟合指数来描述。我们的结果表明,在常见的实验条件下,随着压力的降低和温度的升高,该指数将在0.5到1.6之间变化。这些结果表明,镁在整个上地幔中的扩散可能会发生很大的变化,而这种变化无法用简单的单指数模型来捕捉。与氢扩散率的比较表明,水合Mg空位的扩散也控制氢在(无铁)forsterite中的扩散,我们的结论也适用于氢扩散率和各向异性。我们还发现,阳离子扩散率可能不能解释水对橄榄石电导率影响的实验测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast anisotropic Mg and H diffusion in wet forsterite

Adding hydrogen to forsterite strongly increases the diffusion rate of Mg, but the reason for this is unclear. As Mg diffusion in forsterite can influence its electrical conductivity, understanding this process is important. In this study we use density functional theory to predict the diffusivity of H-bearing Mg vacancies and we find that they are around 1000 times slower than H-free Mg vacancies. H-bearing Mg vacancies are many orders of magnitude more concentrated than H-free Mg vacancies, however, and diffusion is a combination of diffusivity and defect concentration. Overall, the presence of hydrated Mg vacancies is predicted to cause a large (multiple orders of magnitude) increase in both diffusion rate and diffusional anisotropy with a strong preference for diffusion in the [001] direction predicted. In models of experimental data, the effect of water concentration on diffusion is often described by a constant best-fitting exponent. Our results suggest that this exponent will vary between 0.5 and 1.6 across common experimental conditions with pressure decreasing and temperature increasing this exponent. These results suggest that Mg diffusion in forsterite could vary considerably throughout upper mantle conditions in ways that cannot be captured with a simple single-exponent model. Comparisons to measures of hydrogen diffusivity suggest that the diffusion of hydrated Mg vacancies also controls the diffusion of hydrogen in (iron-free) forsterite and that our conclusions above also apply to hydrogen diffusion rates and anisotropy. We also find that cation diffusivity likely cannot explain experimental measurements of the effect of water on electrical conductivity in olivine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system Thermophysical properties of synthetic marialite Thermodynamic modeling of the Mn–Si–O system Fundamentals on dependence of volume on pressure and temperature High-temperature thermodynamic properties of Y-doped barium zirconates, BaZr1–xYxO3−x/2 (x = 0.1, 0.2), with perovskite-type structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1