不同结构的环氧基ZnO纳米复合材料:电晕放电和热转变研究

IF 1.8 4区 化学 Q3 POLYMER SCIENCE High Performance Polymers Pub Date : 2023-05-03 DOI:10.1177/09540083231167743
Mihir N. Velani, Ritesh Patel
{"title":"不同结构的环氧基ZnO纳米复合材料:电晕放电和热转变研究","authors":"Mihir N. Velani, Ritesh Patel","doi":"10.1177/09540083231167743","DOIUrl":null,"url":null,"abstract":"Polymeric epoxy-based nanocomposites have tremendously grown in electronic and indoor high-voltage insulation applications over the last two decades. The interface between the epoxy resin and inorganic fillers surprisingly improves the performance compared to neat epoxy and conventional ceramic insulators. However, several configurations, including the filler loading, filler size, and synthesis process, substantially impact performance. Dielectrics employed in power equipment are often exposed to corona discharges, causing surface erosion and may cause flashover due to prolonged exposure to the discharges. Also, dielectrics must continuously endure heat from leakage currents or surrounding temperatures. The present work examines various configurations of the epoxy/ZnO composites for the corona discharge resistance and thermal stability: the effect of filler loading, preparation method of nanocomposites, and co-filling of nano-micro fillers. The ZnO nanoparticles were disseminated in the epoxy resin using a probe and bath sonicator with and without solvent. It also includes the impact of heated nanoparticles. The corona discharge tests were performed using a set-up similar to CIGRE working group D1.24. The studies of surface degradation were conducted using surface roughness metrics obtained from an optical 3D profilometer. Differential scanning calorimetry (DSC) was used to perform the thermal analyses as per ASTM E1356. It was found that compared to all the filled specimens, the neat epoxy experienced more severe erosion. In addition, the specimen filled with ZnO nanoparticles endured positive corona discharges compared to negative and AC discharges. The specimen prepared with heated nanoparticles without solvent using a probe sonicator showed high heat energy and heat capacity leading to thermal instability. Besides, the interface between nano-micro particles and the host material increases corona discharge resistance and thermal stability.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epoxy-based ZnO nanocomposites in various configurations: Corona discharges and thermal transition studies\",\"authors\":\"Mihir N. Velani, Ritesh Patel\",\"doi\":\"10.1177/09540083231167743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymeric epoxy-based nanocomposites have tremendously grown in electronic and indoor high-voltage insulation applications over the last two decades. The interface between the epoxy resin and inorganic fillers surprisingly improves the performance compared to neat epoxy and conventional ceramic insulators. However, several configurations, including the filler loading, filler size, and synthesis process, substantially impact performance. Dielectrics employed in power equipment are often exposed to corona discharges, causing surface erosion and may cause flashover due to prolonged exposure to the discharges. Also, dielectrics must continuously endure heat from leakage currents or surrounding temperatures. The present work examines various configurations of the epoxy/ZnO composites for the corona discharge resistance and thermal stability: the effect of filler loading, preparation method of nanocomposites, and co-filling of nano-micro fillers. The ZnO nanoparticles were disseminated in the epoxy resin using a probe and bath sonicator with and without solvent. It also includes the impact of heated nanoparticles. The corona discharge tests were performed using a set-up similar to CIGRE working group D1.24. The studies of surface degradation were conducted using surface roughness metrics obtained from an optical 3D profilometer. Differential scanning calorimetry (DSC) was used to perform the thermal analyses as per ASTM E1356. It was found that compared to all the filled specimens, the neat epoxy experienced more severe erosion. In addition, the specimen filled with ZnO nanoparticles endured positive corona discharges compared to negative and AC discharges. The specimen prepared with heated nanoparticles without solvent using a probe sonicator showed high heat energy and heat capacity leading to thermal instability. Besides, the interface between nano-micro particles and the host material increases corona discharge resistance and thermal stability.\",\"PeriodicalId\":12932,\"journal\":{\"name\":\"High Performance Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09540083231167743\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083231167743","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年中,高分子环氧基纳米复合材料在电子和室内高压绝缘方面的应用取得了巨大的发展。与纯环氧树脂和传统陶瓷绝缘子相比,环氧树脂和无机填料之间的界面惊人地提高了性能。然而,几种配置,包括填料的负载,填料的大小,和合成工艺,实质上影响性能。电力设备中使用的介质经常暴露在电晕放电中,造成表面侵蚀,并可能由于长时间暴露在放电中而引起闪络。此外,电介质必须持续承受来自泄漏电流或周围温度的热量。本文研究了环氧/ZnO复合材料的不同结构对其电晕放电性能和热稳定性的影响:填料负载、纳米复合材料的制备方法以及纳米微填料的共填充。采用探针和浴声器在环氧树脂中浸渍氧化锌纳米粒子。它还包括加热纳米颗粒的影响。电晕放电试验使用类似CIGRE工作组D1.24的设置进行。使用光学三维轮廓仪获得的表面粗糙度指标进行表面退化研究。采用差示扫描量热法(DSC)按照ASTM E1356进行热分析。结果表明,与所有填充试样相比,纯环氧树脂的侵蚀更为严重。此外,与负极和交流放电相比,填充ZnO纳米粒子的样品承受正电晕放电。用探针声纳器制备的无溶剂加热纳米颗粒样品显示出高的热能和热容,导致热不稳定性。此外,纳米微粒子与基体材料之间的界面增加了电晕放电电阻和热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epoxy-based ZnO nanocomposites in various configurations: Corona discharges and thermal transition studies
Polymeric epoxy-based nanocomposites have tremendously grown in electronic and indoor high-voltage insulation applications over the last two decades. The interface between the epoxy resin and inorganic fillers surprisingly improves the performance compared to neat epoxy and conventional ceramic insulators. However, several configurations, including the filler loading, filler size, and synthesis process, substantially impact performance. Dielectrics employed in power equipment are often exposed to corona discharges, causing surface erosion and may cause flashover due to prolonged exposure to the discharges. Also, dielectrics must continuously endure heat from leakage currents or surrounding temperatures. The present work examines various configurations of the epoxy/ZnO composites for the corona discharge resistance and thermal stability: the effect of filler loading, preparation method of nanocomposites, and co-filling of nano-micro fillers. The ZnO nanoparticles were disseminated in the epoxy resin using a probe and bath sonicator with and without solvent. It also includes the impact of heated nanoparticles. The corona discharge tests were performed using a set-up similar to CIGRE working group D1.24. The studies of surface degradation were conducted using surface roughness metrics obtained from an optical 3D profilometer. Differential scanning calorimetry (DSC) was used to perform the thermal analyses as per ASTM E1356. It was found that compared to all the filled specimens, the neat epoxy experienced more severe erosion. In addition, the specimen filled with ZnO nanoparticles endured positive corona discharges compared to negative and AC discharges. The specimen prepared with heated nanoparticles without solvent using a probe sonicator showed high heat energy and heat capacity leading to thermal instability. Besides, the interface between nano-micro particles and the host material increases corona discharge resistance and thermal stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Performance Polymers
High Performance Polymers 化学-高分子科学
CiteScore
4.20
自引率
14.30%
发文量
106
审稿时长
1.2 months
期刊介绍: Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.
期刊最新文献
The fabrication of polyimide-based tunable ternary memristors doped with Ni-Co coated carbon composite nanofibers Analysis of the impact of exfoliated graphene oxide on the mechanical performance and in-plane fracture resistance of epoxy-based nanocomposite Preparation of halogen-free flame retardant curing agent and its application in epoxy resin Bio-based phthalonitrile resin derived from quercetin as a sustainable molecular scaffold: Synthesis, curing reaction and comparison with petroleum-based counterparts Copolymerization of novel self-promoted curing phthalonitrile with epoxy resin and its thermal property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1