L. Alexandrescu, M. Georgescu, M. Sönmez, M. Nițuică, M. Stelescu, D. Gurau
{"title":"基于天然橡胶和功能化消费后皮革废料的可生物降解聚合物复合材料","authors":"L. Alexandrescu, M. Georgescu, M. Sönmez, M. Nițuică, M. Stelescu, D. Gurau","doi":"10.24264/lfj.22.3.8","DOIUrl":null,"url":null,"abstract":"This work presents the development and characterization of biodegradable polymeric composites based on natural rubber and protein waste from finished post-consumer leather. Protein waste is cryogenically ground to min. 500 nm, functionalized by a mechanical process at temperature with potassium oleate (5%) and mixed in the composite in various proportions (5, 10, 20, 30, 50%). This composite will be made into a low-density product, with low cost, recovery and reuse of waste, and last but not least, biodegradable. The methodology for making the new materials involves the following steps: sorting waste, grinding, functionalization and compounding. These operations are easy to manage and do not involve new equipment. Compounding, the most important operation, will be carried out on a roller and the mixtures will be processed into finished products by compression in an electric press. The tested biodegradable composites were structurally and physico-mechanically characterized. Waste transformation (ground and functionalized) into new value-added products will lead to remarkable improvements in the life cycle of raw materials and the sustainable use of this waste, contributing to sustainability, improving eco-efficiency and economic efficiency and reducing the “pressure” of waste on the environment.","PeriodicalId":38857,"journal":{"name":"Leather and Footwear Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable Polymeric Composites Based on Natural Rubber and Functionalized Post-Consumer Leather Waste\",\"authors\":\"L. Alexandrescu, M. Georgescu, M. Sönmez, M. Nițuică, M. Stelescu, D. Gurau\",\"doi\":\"10.24264/lfj.22.3.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the development and characterization of biodegradable polymeric composites based on natural rubber and protein waste from finished post-consumer leather. Protein waste is cryogenically ground to min. 500 nm, functionalized by a mechanical process at temperature with potassium oleate (5%) and mixed in the composite in various proportions (5, 10, 20, 30, 50%). This composite will be made into a low-density product, with low cost, recovery and reuse of waste, and last but not least, biodegradable. The methodology for making the new materials involves the following steps: sorting waste, grinding, functionalization and compounding. These operations are easy to manage and do not involve new equipment. Compounding, the most important operation, will be carried out on a roller and the mixtures will be processed into finished products by compression in an electric press. The tested biodegradable composites were structurally and physico-mechanically characterized. Waste transformation (ground and functionalized) into new value-added products will lead to remarkable improvements in the life cycle of raw materials and the sustainable use of this waste, contributing to sustainability, improving eco-efficiency and economic efficiency and reducing the “pressure” of waste on the environment.\",\"PeriodicalId\":38857,\"journal\":{\"name\":\"Leather and Footwear Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leather and Footwear Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24264/lfj.22.3.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leather and Footwear Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24264/lfj.22.3.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Biodegradable Polymeric Composites Based on Natural Rubber and Functionalized Post-Consumer Leather Waste
This work presents the development and characterization of biodegradable polymeric composites based on natural rubber and protein waste from finished post-consumer leather. Protein waste is cryogenically ground to min. 500 nm, functionalized by a mechanical process at temperature with potassium oleate (5%) and mixed in the composite in various proportions (5, 10, 20, 30, 50%). This composite will be made into a low-density product, with low cost, recovery and reuse of waste, and last but not least, biodegradable. The methodology for making the new materials involves the following steps: sorting waste, grinding, functionalization and compounding. These operations are easy to manage and do not involve new equipment. Compounding, the most important operation, will be carried out on a roller and the mixtures will be processed into finished products by compression in an electric press. The tested biodegradable composites were structurally and physico-mechanically characterized. Waste transformation (ground and functionalized) into new value-added products will lead to remarkable improvements in the life cycle of raw materials and the sustainable use of this waste, contributing to sustainability, improving eco-efficiency and economic efficiency and reducing the “pressure” of waste on the environment.