PtRu催化剂与氮掺杂碳载体的协同作用促进氢氧化

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2023-08-31 DOI:10.1038/s41929-023-01007-1
Weiyan Ni, Josephine Lederballe Meibom, Noor Ul Hassan, Miyeon Chang, You-Chiuan Chu, Anna Krammer, Songlan Sun, Yiwei Zheng, Lichen Bai, Wenchao Ma, Seunghwa Lee, Seongmin Jin, Jeremy S. Luterbacher, Andreas Schüler, Hao Ming Chen, William E. Mustain, Xile Hu
{"title":"PtRu催化剂与氮掺杂碳载体的协同作用促进氢氧化","authors":"Weiyan Ni, Josephine Lederballe Meibom, Noor Ul Hassan, Miyeon Chang, You-Chiuan Chu, Anna Krammer, Songlan Sun, Yiwei Zheng, Lichen Bai, Wenchao Ma, Seunghwa Lee, Seongmin Jin, Jeremy S. Luterbacher, Andreas Schüler, Hao Ming Chen, William E. Mustain, Xile Hu","doi":"10.1038/s41929-023-01007-1","DOIUrl":null,"url":null,"abstract":"Hydroxide exchange membrane fuel cell (HEMFC) is a potentially cost-effective energy conversion technology. However, current state-of-the-art HEMFCs require a high loading of platinum-group-metal (PGM) catalysts, especially for the hydrogen oxidation reaction. Here we develop a porous nitrogen-doped carbon-suppported PtRu hydrogen oxidation reaction catalyst (PtRu/pN-C) that has a high intrinsic and mass activity in alkaline condition. Spectroscopic and microscopic data indicate the presence of Pt single atoms in addition to PtRu nanoparticles on pN-C. Mechanistic study suggests Ru modulates the electronic structure of Pt for an optimized hydrogen binding energy, while Pt single atoms on pN-C optimize the interfacial water structure. These synergetic interactions are responsible for the high catalytic activity of this catalyst. An HEMFC with a low loading of this catalyst and a commercial Fe–N–C oxygen reduction reaction catalyst achieves a high PGM utilization rate. The current density at 0.65 V of this HEMFC reaches 1.5 A cm−2, exceeding the US Department of Energy 2022 target (1 A cm−2) by 50%. Hydroxide exchange membrane fuel cells are promising devices for energy conversion. Now, a porous nitrogen-doped carbon-supported PtRu catalyst for the hydrogen oxidation reaction is presented, consisting of Pt single atoms and PtRu nanoparticles that work synergistically. The catalyst enables a fuel cell that exceeds the US Department of Energy 2022 performance target.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"6 9","pages":"773-783"},"PeriodicalIF":42.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation\",\"authors\":\"Weiyan Ni, Josephine Lederballe Meibom, Noor Ul Hassan, Miyeon Chang, You-Chiuan Chu, Anna Krammer, Songlan Sun, Yiwei Zheng, Lichen Bai, Wenchao Ma, Seunghwa Lee, Seongmin Jin, Jeremy S. Luterbacher, Andreas Schüler, Hao Ming Chen, William E. Mustain, Xile Hu\",\"doi\":\"10.1038/s41929-023-01007-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroxide exchange membrane fuel cell (HEMFC) is a potentially cost-effective energy conversion technology. However, current state-of-the-art HEMFCs require a high loading of platinum-group-metal (PGM) catalysts, especially for the hydrogen oxidation reaction. Here we develop a porous nitrogen-doped carbon-suppported PtRu hydrogen oxidation reaction catalyst (PtRu/pN-C) that has a high intrinsic and mass activity in alkaline condition. Spectroscopic and microscopic data indicate the presence of Pt single atoms in addition to PtRu nanoparticles on pN-C. Mechanistic study suggests Ru modulates the electronic structure of Pt for an optimized hydrogen binding energy, while Pt single atoms on pN-C optimize the interfacial water structure. These synergetic interactions are responsible for the high catalytic activity of this catalyst. An HEMFC with a low loading of this catalyst and a commercial Fe–N–C oxygen reduction reaction catalyst achieves a high PGM utilization rate. The current density at 0.65 V of this HEMFC reaches 1.5 A cm−2, exceeding the US Department of Energy 2022 target (1 A cm−2) by 50%. Hydroxide exchange membrane fuel cells are promising devices for energy conversion. Now, a porous nitrogen-doped carbon-supported PtRu catalyst for the hydrogen oxidation reaction is presented, consisting of Pt single atoms and PtRu nanoparticles that work synergistically. The catalyst enables a fuel cell that exceeds the US Department of Energy 2022 performance target.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"6 9\",\"pages\":\"773-783\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-023-01007-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-023-01007-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氢氧化物交换膜燃料电池(HEMFC)是一种具有潜在成本效益的能源转换技术。然而,目前最先进的氢氧化膜燃料电池需要高负载的铂族金属(PGM)催化剂,特别是在氢氧化反应中。在此,我们开发了一种多孔掺氮碳支撑铂钌氢氧化反应催化剂(PtRu/pN-C),它在碱性条件下具有很高的本征活性和质量活性。光谱和显微镜数据表明,在 pN-C 上除了 PtRu 纳米颗粒外,还存在 Pt 单原子。机理研究表明,Ru 可调节铂的电子结构以优化氢结合能,而 pN-C 上的铂单原子则可优化界面水结构。这些协同作用是该催化剂具有高催化活性的原因。使用这种催化剂和商用 Fe-N-C 氧还原反应催化剂的低负载 HEMFC 实现了较高的 PGM 利用率。这种氢氧交换膜燃料电池在 0.65 V 时的电流密度达到 1.5 A cm-2,比美国能源部 2022 年的目标(1 A cm-2)高出 50%。氢氧化物交换膜燃料电池是一种前景广阔的能量转换设备。现在,我们展示了一种用于氢氧化反应的多孔掺氮碳支撑铂钌催化剂,它由铂单原子和铂钌纳米颗粒组成,可协同发挥作用。该催化剂使燃料电池的性能超过了美国能源部 2022 年的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation
Hydroxide exchange membrane fuel cell (HEMFC) is a potentially cost-effective energy conversion technology. However, current state-of-the-art HEMFCs require a high loading of platinum-group-metal (PGM) catalysts, especially for the hydrogen oxidation reaction. Here we develop a porous nitrogen-doped carbon-suppported PtRu hydrogen oxidation reaction catalyst (PtRu/pN-C) that has a high intrinsic and mass activity in alkaline condition. Spectroscopic and microscopic data indicate the presence of Pt single atoms in addition to PtRu nanoparticles on pN-C. Mechanistic study suggests Ru modulates the electronic structure of Pt for an optimized hydrogen binding energy, while Pt single atoms on pN-C optimize the interfacial water structure. These synergetic interactions are responsible for the high catalytic activity of this catalyst. An HEMFC with a low loading of this catalyst and a commercial Fe–N–C oxygen reduction reaction catalyst achieves a high PGM utilization rate. The current density at 0.65 V of this HEMFC reaches 1.5 A cm−2, exceeding the US Department of Energy 2022 target (1 A cm−2) by 50%. Hydroxide exchange membrane fuel cells are promising devices for energy conversion. Now, a porous nitrogen-doped carbon-supported PtRu catalyst for the hydrogen oxidation reaction is presented, consisting of Pt single atoms and PtRu nanoparticles that work synergistically. The catalyst enables a fuel cell that exceeds the US Department of Energy 2022 performance target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Face to phase Surface (dis)order sleuthing Coacervation-enhanced peptide catalysis An enantioselective HAT for diols Effective anions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1