印尼国家桥梁规范中抗震设计规定的演变

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering and Technological Sciences Pub Date : 2023-01-02 DOI:10.5614/j.eng.technol.sci.2022.54.6.14
Veby Citra Simanjuntak, I. Imran, M. Moestopo, H. Setio
{"title":"印尼国家桥梁规范中抗震设计规定的演变","authors":"Veby Citra Simanjuntak, I. Imran, M. Moestopo, H. Setio","doi":"10.5614/j.eng.technol.sci.2022.54.6.14","DOIUrl":null,"url":null,"abstract":"To accommodate increased seismic hazards in Indonesia, provisions regarding structural details on seismic regulations have been tightened. In this paper, the variations in seismic hazard and detailing requirements from bridge code era before 1990 to the present was provided. To examine the bridge performance, pushover analysis was carried out based on the latest bridge code SNI 2833:2016/Seismic Map 2017. From the analysis results, the performance of older bridges would typically be less than more recently designed structures.  The performance level of the bridge in the era before SNI 2833:2016/Seismic Map 2017 will be Operational-Life Safety (LS) whereas the performance level of the bridge designed with SNI 2833:2016 will be Elastic – Operational. Referring to NCHRP 949 for bridge performance level evaluation, results show that the performance level of the bridge still satisfies the requirement, which is Life Safety under upper-level earthquake. Therefore, the existing bridge shows adequate capacity under the current seismic load Seismic Map 2017 (7% probability of exceedance in 75 years (RP= 1000 years)). Evaluation of seismic vulnerability needs to be done to ensure the safety of the existing bridges in Indonesia, most of which are located in earthquake-prone areas, especially those that were designed with older version regulations.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Evolution of Seismic Design Provisions in Indonesia’s National Bridge Code\",\"authors\":\"Veby Citra Simanjuntak, I. Imran, M. Moestopo, H. Setio\",\"doi\":\"10.5614/j.eng.technol.sci.2022.54.6.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To accommodate increased seismic hazards in Indonesia, provisions regarding structural details on seismic regulations have been tightened. In this paper, the variations in seismic hazard and detailing requirements from bridge code era before 1990 to the present was provided. To examine the bridge performance, pushover analysis was carried out based on the latest bridge code SNI 2833:2016/Seismic Map 2017. From the analysis results, the performance of older bridges would typically be less than more recently designed structures.  The performance level of the bridge in the era before SNI 2833:2016/Seismic Map 2017 will be Operational-Life Safety (LS) whereas the performance level of the bridge designed with SNI 2833:2016 will be Elastic – Operational. Referring to NCHRP 949 for bridge performance level evaluation, results show that the performance level of the bridge still satisfies the requirement, which is Life Safety under upper-level earthquake. Therefore, the existing bridge shows adequate capacity under the current seismic load Seismic Map 2017 (7% probability of exceedance in 75 years (RP= 1000 years)). Evaluation of seismic vulnerability needs to be done to ensure the safety of the existing bridges in Indonesia, most of which are located in earthquake-prone areas, especially those that were designed with older version regulations.\",\"PeriodicalId\":15689,\"journal\":{\"name\":\"Journal of Engineering and Technological Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Technological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.eng.technol.sci.2022.54.6.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.6.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了适应印度尼西亚日益增加的地震危险,有关地震法规结构细节的规定已经收紧。本文介绍了从1990年以前的桥梁规范时代到现在,地震危险性和详细要求的变化。为了检查桥梁性能,根据最新桥梁规范SNI 2833:2016/2017年地震图进行了推倒分析。从分析结果来看,旧桥的性能通常低于最近设计的结构。在SNI 2833:2016/2017地震图之前,该桥的性能水平将为运行生命安全(LS),而根据SNI 2833-2016设计的桥梁的性能水平为弹性-运行。参照NCHRP 949进行桥梁性能等级评定,结果表明,该桥的性能等级仍满足要求,即在高层地震作用下的生命安全。因此,现有桥梁在当前地震荷载地震图2017(75年超越概率为7%(RP=1000年))下显示出足够的承载力。需要对地震脆弱性进行评估,以确保印度尼西亚现有桥梁的安全,这些桥梁大多位于地震易发地区,尤其是那些按照旧版本法规设计的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Evolution of Seismic Design Provisions in Indonesia’s National Bridge Code
To accommodate increased seismic hazards in Indonesia, provisions regarding structural details on seismic regulations have been tightened. In this paper, the variations in seismic hazard and detailing requirements from bridge code era before 1990 to the present was provided. To examine the bridge performance, pushover analysis was carried out based on the latest bridge code SNI 2833:2016/Seismic Map 2017. From the analysis results, the performance of older bridges would typically be less than more recently designed structures.  The performance level of the bridge in the era before SNI 2833:2016/Seismic Map 2017 will be Operational-Life Safety (LS) whereas the performance level of the bridge designed with SNI 2833:2016 will be Elastic – Operational. Referring to NCHRP 949 for bridge performance level evaluation, results show that the performance level of the bridge still satisfies the requirement, which is Life Safety under upper-level earthquake. Therefore, the existing bridge shows adequate capacity under the current seismic load Seismic Map 2017 (7% probability of exceedance in 75 years (RP= 1000 years)). Evaluation of seismic vulnerability needs to be done to ensure the safety of the existing bridges in Indonesia, most of which are located in earthquake-prone areas, especially those that were designed with older version regulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering and Technological Sciences
Journal of Engineering and Technological Sciences ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
77
审稿时长
24 weeks
期刊介绍: Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
期刊最新文献
Lessons Learned in Interfacial Tension Prediction Using a Mixture of Sulfonate- and Ethoxylate-based Surfactants in a Waxy Oil-brine System Feature Extraction Evaluation of Various Machine Learning Methods for Finger Movement Classification using Double Myo Armband Thermodynamic Study on Decarbonization of Combined Cycle Power Plant Evaluation of Drainage System of Light Rapid Transport (LRT) Depo – Kelapa Gading – Jakarta City Influence of Opening and Boundary Conditions on the Behavior of Concrete Hollow Block Walls: Experimental Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1