微波萃取法制备直接可压片的优选方法

IF 2.3 Q3 PHARMACOLOGY & PHARMACY Scientia Pharmaceutica Pub Date : 2023-03-23 DOI:10.3390/scipharm91020017
Chaowalit Monton, Piyapa Keawchay, Chantisa Pokkrong, Pariyakorn Kamnoedthapaya, Abhiruj Navabhatra, Jirapornchai Suksaeree, Thaniya Wunnakup, Natawat Chankana, T. Songsak
{"title":"微波萃取法制备直接可压片的优选方法","authors":"Chaowalit Monton, Piyapa Keawchay, Chantisa Pokkrong, Pariyakorn Kamnoedthapaya, Abhiruj Navabhatra, Jirapornchai Suksaeree, Thaniya Wunnakup, Natawat Chankana, T. Songsak","doi":"10.3390/scipharm91020017","DOIUrl":null,"url":null,"abstract":"This research sought to optimize the microwave-assisted extraction of Chatuphalathika as an herbal recipe maximizing the active compounds and the antioxidant activity by the Box–Behnken design. Three factors—microwave power, time, and cycle—were varied. Eight responses—extraction yield, total phenolic content, gallic acid content, corilagin content, chebulagic acid, chebulinic acid, IC50 from DPPH assay, and IC50 from FRAP assay—were monitored. Furthermore, cytotoxicity was evaluated to ensure the safety of the extract. After that, the optimized extract was compressed into tablets. The results showed that the optimal condition of the microwave-assisted extraction gave the simultaneous maximum extraction yield, total phenolic content, and antioxidant activity with a microwave power of 450 W for 30 s and 3 cycles. The extract obtained from the optimal condition exhibited a good safety profile although a concentration of 5 mg/mL was used. The optimized tablets were achieved when a compression force of 1500 psi and magnesium stearate of 1% were applied, and no sodium starch glycolate was added. In conclusion, the optimal green extraction method could be used for the extraction of the Chatuphalathika. Furthermore, the fabrication of Chatuphalathika tablets was successful, as the tablets had low friability with a short disintegration time.","PeriodicalId":21601,"journal":{"name":"Scientia Pharmaceutica","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach\",\"authors\":\"Chaowalit Monton, Piyapa Keawchay, Chantisa Pokkrong, Pariyakorn Kamnoedthapaya, Abhiruj Navabhatra, Jirapornchai Suksaeree, Thaniya Wunnakup, Natawat Chankana, T. Songsak\",\"doi\":\"10.3390/scipharm91020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research sought to optimize the microwave-assisted extraction of Chatuphalathika as an herbal recipe maximizing the active compounds and the antioxidant activity by the Box–Behnken design. Three factors—microwave power, time, and cycle—were varied. Eight responses—extraction yield, total phenolic content, gallic acid content, corilagin content, chebulagic acid, chebulinic acid, IC50 from DPPH assay, and IC50 from FRAP assay—were monitored. Furthermore, cytotoxicity was evaluated to ensure the safety of the extract. After that, the optimized extract was compressed into tablets. The results showed that the optimal condition of the microwave-assisted extraction gave the simultaneous maximum extraction yield, total phenolic content, and antioxidant activity with a microwave power of 450 W for 30 s and 3 cycles. The extract obtained from the optimal condition exhibited a good safety profile although a concentration of 5 mg/mL was used. The optimized tablets were achieved when a compression force of 1500 psi and magnesium stearate of 1% were applied, and no sodium starch glycolate was added. In conclusion, the optimal green extraction method could be used for the extraction of the Chatuphalathika. Furthermore, the fabrication of Chatuphalathika tablets was successful, as the tablets had low friability with a short disintegration time.\",\"PeriodicalId\":21601,\"journal\":{\"name\":\"Scientia Pharmaceutica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Pharmaceutica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/scipharm91020017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/scipharm91020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1

摘要

这项研究试图通过Box-Behnken设计,优化微波辅助提取Chatuphalathika作为一种草药配方,最大限度地提高活性化合物和抗氧化活性。三个因素——微波功率、时间和周期——是不同的。监测了八种反应——提取率、总酚含量、没食子酸含量、珊瑚苷含量、车草酸、车草酸,DPPH测定的IC50和FRAP测定的IC50%。此外,对细胞毒性进行了评估,以确保提取物的安全性。然后,将优化的提取物压缩成片剂。结果表明,微波辅助提取的最佳条件是,在450 W的微波功率下,提取时间为30 s,循环次数为3次,同时提取率、总酚含量和抗氧化活性最高。尽管使用了5mg/mL的浓度,但从最佳条件获得的提取物表现出良好的安全性。当施加1500psi的压缩力和1%的硬脂酸镁,并且不添加淀粉乙醇酸钠时,获得了优化的片剂。总之,最佳的绿色提取方法可用于查图帕拉提卡的提取。此外,Chatuphalathika片剂的制备是成功的,因为该片剂具有低脆性和短崩解时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach
This research sought to optimize the microwave-assisted extraction of Chatuphalathika as an herbal recipe maximizing the active compounds and the antioxidant activity by the Box–Behnken design. Three factors—microwave power, time, and cycle—were varied. Eight responses—extraction yield, total phenolic content, gallic acid content, corilagin content, chebulagic acid, chebulinic acid, IC50 from DPPH assay, and IC50 from FRAP assay—were monitored. Furthermore, cytotoxicity was evaluated to ensure the safety of the extract. After that, the optimized extract was compressed into tablets. The results showed that the optimal condition of the microwave-assisted extraction gave the simultaneous maximum extraction yield, total phenolic content, and antioxidant activity with a microwave power of 450 W for 30 s and 3 cycles. The extract obtained from the optimal condition exhibited a good safety profile although a concentration of 5 mg/mL was used. The optimized tablets were achieved when a compression force of 1500 psi and magnesium stearate of 1% were applied, and no sodium starch glycolate was added. In conclusion, the optimal green extraction method could be used for the extraction of the Chatuphalathika. Furthermore, the fabrication of Chatuphalathika tablets was successful, as the tablets had low friability with a short disintegration time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Pharmaceutica
Scientia Pharmaceutica Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.60
自引率
4.00%
发文量
67
审稿时长
10 weeks
期刊最新文献
The Extraction of Bioactive Agents from Calophyllum inophyllum L., and Their Pharmacological Properties The Risks of “Getting High” on Over-the-Counter Drugs during Pregnancy Diastereomers of Spheroidal Form and Commercially Available Taxifolin Samples Inhibitory Effect of Mistletoe Ointment on DNCB-Induced Atopic Dermatitis in BALB/c Mice Assessing the Influence of a Rotating Magnetic Field on Ibuprofen Permeability from Diverse Pharmaceutical Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1