S. A. Eslaminezhad, Davoud Omarzadeh, M. Eftekhari, M. Akbari
{"title":"开发数据驱动模型预测滑坡敏感区","authors":"S. A. Eslaminezhad, Davoud Omarzadeh, M. Eftekhari, M. Akbari","doi":"10.21163/GT_2021.161.09","DOIUrl":null,"url":null,"abstract":": The occurrence of landslides has always been a problem in spatial planning as one of the environmental threats. The aim of the present study is to estimate the landslide sensitive areas in the Urmia Lake basin based on determining effective criteria and spatial and non-spatial data-driven models. The criteria used in this research include distance to faults, distance to roads, distance to hydrology network, land use, lithology, soil classes, Elevation, slope, aspect and Precipitation. The novelty of this study is to present new combination approaches to determine the effective criteria in landslide sensitive areas (Urmia Lake basin). In this regard, the geographically weighted regression (GWR) with exponential and bi-square kernels and artificial neural network (ANN) combined with a binary particle swarm optimization algorithm (BPSO). The best value of the fitness function (1-R2) for ANN, GWR with the exponential kernel, and GWR with bi-square kernel was obtained 0.2780, 0.07453, and 0.0022, respectively, Which indicates higher compatibility of the bi-square kernel than the other models. It was also found that the criteria used have a significant effect on the landslide sensitive zoning.","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DEVELOPMENT OF A DATA-DRIVEN MODEL TO PREDICT LANDSLIDE SENSITIVE AREAS\",\"authors\":\"S. A. Eslaminezhad, Davoud Omarzadeh, M. Eftekhari, M. Akbari\",\"doi\":\"10.21163/GT_2021.161.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The occurrence of landslides has always been a problem in spatial planning as one of the environmental threats. The aim of the present study is to estimate the landslide sensitive areas in the Urmia Lake basin based on determining effective criteria and spatial and non-spatial data-driven models. The criteria used in this research include distance to faults, distance to roads, distance to hydrology network, land use, lithology, soil classes, Elevation, slope, aspect and Precipitation. The novelty of this study is to present new combination approaches to determine the effective criteria in landslide sensitive areas (Urmia Lake basin). In this regard, the geographically weighted regression (GWR) with exponential and bi-square kernels and artificial neural network (ANN) combined with a binary particle swarm optimization algorithm (BPSO). The best value of the fitness function (1-R2) for ANN, GWR with the exponential kernel, and GWR with bi-square kernel was obtained 0.2780, 0.07453, and 0.0022, respectively, Which indicates higher compatibility of the bi-square kernel than the other models. It was also found that the criteria used have a significant effect on the landslide sensitive zoning.\",\"PeriodicalId\":45100,\"journal\":{\"name\":\"Geographia Technica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographia Technica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21163/GT_2021.161.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographia Technica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21163/GT_2021.161.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
DEVELOPMENT OF A DATA-DRIVEN MODEL TO PREDICT LANDSLIDE SENSITIVE AREAS
: The occurrence of landslides has always been a problem in spatial planning as one of the environmental threats. The aim of the present study is to estimate the landslide sensitive areas in the Urmia Lake basin based on determining effective criteria and spatial and non-spatial data-driven models. The criteria used in this research include distance to faults, distance to roads, distance to hydrology network, land use, lithology, soil classes, Elevation, slope, aspect and Precipitation. The novelty of this study is to present new combination approaches to determine the effective criteria in landslide sensitive areas (Urmia Lake basin). In this regard, the geographically weighted regression (GWR) with exponential and bi-square kernels and artificial neural network (ANN) combined with a binary particle swarm optimization algorithm (BPSO). The best value of the fitness function (1-R2) for ANN, GWR with the exponential kernel, and GWR with bi-square kernel was obtained 0.2780, 0.07453, and 0.0022, respectively, Which indicates higher compatibility of the bi-square kernel than the other models. It was also found that the criteria used have a significant effect on the landslide sensitive zoning.
期刊介绍:
Geographia Technica is a journal devoted to the publication of all papers on all aspects of the use of technical and quantitative methods in geographical research. It aims at presenting its readers with the latest developments in G.I.S technology, mathematical methods applicable to any field of geography, territorial micro-scalar and laboratory experiments, and the latest developments induced by the measurement techniques to the geographical research. Geographia Technica is dedicated to all those who understand that nowadays every field of geography can only be described by specific numerical values, variables both oftime and space which require the sort of numerical analysis only possible with the aid of technical and quantitative methods offered by powerful computers and dedicated software. Our understanding of Geographia Technica expands the concept of technical methods applied to geography to its broadest sense and for that, papers of different interests such as: G.l.S, Spatial Analysis, Remote Sensing, Cartography or Geostatistics as well as papers which, by promoting the above mentioned directions bring a technical approach in the fields of hydrology, climatology, geomorphology, human geography territorial planning are more than welcomed provided they are of sufficient wide interest and relevance.