{"title":"马弗反应器渗氮后复合扩散处理在AISI 4140表面形成微孔","authors":"K. Widi, W. Sujana, T. Rahardjo","doi":"10.1504/ijsurfse.2020.10034489","DOIUrl":null,"url":null,"abstract":"Steel with microporous formation on surface layers is very important as self-lubricant and damping material. In this new method, AISI 4140 steel was subjected in two step combination treatment. First step is boost nitriding gas in fluidised bed reactor for 4 hours at 550°C and the second step is diffusion nitriding gas for 2 h at 550°C in muffle reactors. The diffusion without protective gas where air was present was applied after nitriding treatment in muffle reactors to release excess nitrogen which leads to microporous formation. This mechanism significantly increases surface porosity. The microporous formation at e layer during diffusion at nitriding process is controlled by reaction formation of N2, NO, Cr2O3 and Fe2O3 which depends on the atmosphere condition in the muffle reactor. The dynamics of atoms during these formations create tensile and compressive stress in the grain boundary that increases porosity formation.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface microporous formation on AISI 4140 using combination of diffusion treatment after nitriding gas in muffle reactor\",\"authors\":\"K. Widi, W. Sujana, T. Rahardjo\",\"doi\":\"10.1504/ijsurfse.2020.10034489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steel with microporous formation on surface layers is very important as self-lubricant and damping material. In this new method, AISI 4140 steel was subjected in two step combination treatment. First step is boost nitriding gas in fluidised bed reactor for 4 hours at 550°C and the second step is diffusion nitriding gas for 2 h at 550°C in muffle reactors. The diffusion without protective gas where air was present was applied after nitriding treatment in muffle reactors to release excess nitrogen which leads to microporous formation. This mechanism significantly increases surface porosity. The microporous formation at e layer during diffusion at nitriding process is controlled by reaction formation of N2, NO, Cr2O3 and Fe2O3 which depends on the atmosphere condition in the muffle reactor. The dynamics of atoms during these formations create tensile and compressive stress in the grain boundary that increases porosity formation.\",\"PeriodicalId\":14460,\"journal\":{\"name\":\"International Journal of Surface Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/ijsurfse.2020.10034489\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ijsurfse.2020.10034489","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Surface microporous formation on AISI 4140 using combination of diffusion treatment after nitriding gas in muffle reactor
Steel with microporous formation on surface layers is very important as self-lubricant and damping material. In this new method, AISI 4140 steel was subjected in two step combination treatment. First step is boost nitriding gas in fluidised bed reactor for 4 hours at 550°C and the second step is diffusion nitriding gas for 2 h at 550°C in muffle reactors. The diffusion without protective gas where air was present was applied after nitriding treatment in muffle reactors to release excess nitrogen which leads to microporous formation. This mechanism significantly increases surface porosity. The microporous formation at e layer during diffusion at nitriding process is controlled by reaction formation of N2, NO, Cr2O3 and Fe2O3 which depends on the atmosphere condition in the muffle reactor. The dynamics of atoms during these formations create tensile and compressive stress in the grain boundary that increases porosity formation.
期刊介绍:
IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.