一种利用改性生物聚合物从废水中去除锌离子的绿色方法

IF 0.8 Q4 MATERIALS SCIENCE, BIOMATERIALS Progress on Chemistry and Application of Chitin and its Derivatives Pub Date : 2021-09-30 DOI:10.15259/pcacd.26.009
C. Jeyaseelan, Antil Jain, R. Jugade
{"title":"一种利用改性生物聚合物从废水中去除锌离子的绿色方法","authors":"C. Jeyaseelan, Antil Jain, R. Jugade","doi":"10.15259/pcacd.26.009","DOIUrl":null,"url":null,"abstract":"Zinc pollution in wastewater is a global problem because it is highly toxic. Zinc is commonly used in industries that transfer the water containing zinc directly into water sources, leading to pollution. Exposure to a high level of zinc causes major health problems. This study evaluated the adsorption of zinc ions from aqueous system using modified biopolymers of chitosan by crosslinking with sulphates using the batch adsorption method; the concentration was determined using atomic absorption spectrophotometry. The sulphate cross-linked chitosan (SCC) was characterised by several method. The effects of various experimental parameters such as pH, contact time, concentration, adsorbent dosage and temperature were investigated. Under the optimised conditions, the percentage efficiency for the removal of zinc(II) was up to 85%. Freundlich and Langmuir isotherms were used to analyse the equilibrium adsorption data along with kinetic studies. Various thermodynamic parameters have also been reported.","PeriodicalId":44461,"journal":{"name":"Progress on Chemistry and Application of Chitin and its Derivatives","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GREEN METHOD FOR THE REMOVAL OF ZINC(II) IONS FROM WASTEWATER USING MODIFED BIOPOLYMERS\",\"authors\":\"C. Jeyaseelan, Antil Jain, R. Jugade\",\"doi\":\"10.15259/pcacd.26.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc pollution in wastewater is a global problem because it is highly toxic. Zinc is commonly used in industries that transfer the water containing zinc directly into water sources, leading to pollution. Exposure to a high level of zinc causes major health problems. This study evaluated the adsorption of zinc ions from aqueous system using modified biopolymers of chitosan by crosslinking with sulphates using the batch adsorption method; the concentration was determined using atomic absorption spectrophotometry. The sulphate cross-linked chitosan (SCC) was characterised by several method. The effects of various experimental parameters such as pH, contact time, concentration, adsorbent dosage and temperature were investigated. Under the optimised conditions, the percentage efficiency for the removal of zinc(II) was up to 85%. Freundlich and Langmuir isotherms were used to analyse the equilibrium adsorption data along with kinetic studies. Various thermodynamic parameters have also been reported.\",\"PeriodicalId\":44461,\"journal\":{\"name\":\"Progress on Chemistry and Application of Chitin and its Derivatives\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress on Chemistry and Application of Chitin and its Derivatives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15259/pcacd.26.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress on Chemistry and Application of Chitin and its Derivatives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15259/pcacd.26.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

废水中的锌污染是一个全球性的问题,因为它具有很高的毒性。锌通常用于工业,将含锌的水直接转移到水源中,导致污染。暴露在高水平的锌中会导致严重的健康问题。研究了改性壳聚糖生物聚合物与硫酸盐交联对水中锌离子的吸附性能;采用原子吸收分光光度法测定其浓度。采用多种方法对硫酸盐交联壳聚糖(SCC)进行了表征。考察了pH、接触时间、吸附剂浓度、吸附剂用量、温度等实验参数对吸附效果的影响。在优化条件下,锌(II)的去除率可达85%。采用Freundlich等温线和Langmuir等温线分析了平衡吸附数据和动力学研究。各种热力学参数也被报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A GREEN METHOD FOR THE REMOVAL OF ZINC(II) IONS FROM WASTEWATER USING MODIFED BIOPOLYMERS
Zinc pollution in wastewater is a global problem because it is highly toxic. Zinc is commonly used in industries that transfer the water containing zinc directly into water sources, leading to pollution. Exposure to a high level of zinc causes major health problems. This study evaluated the adsorption of zinc ions from aqueous system using modified biopolymers of chitosan by crosslinking with sulphates using the batch adsorption method; the concentration was determined using atomic absorption spectrophotometry. The sulphate cross-linked chitosan (SCC) was characterised by several method. The effects of various experimental parameters such as pH, contact time, concentration, adsorbent dosage and temperature were investigated. Under the optimised conditions, the percentage efficiency for the removal of zinc(II) was up to 85%. Freundlich and Langmuir isotherms were used to analyse the equilibrium adsorption data along with kinetic studies. Various thermodynamic parameters have also been reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
19
期刊介绍: Progress in the Chemistry and Application of Chitin and its Derivatives is an annual journal focused on all aspects of production, modification, enzymology and application of chitin and its many derivatives, including chitosan. The journal publishes full-length papers as well as invited reviews. To be considered, papers must present original research that has not been published or accepted for publication elsewhere. The language of the journal will be English.
期刊最新文献
MOLECULAR DYNAMICS SIMULATIONS OF THE AFFINITY OF CHITIN AND CHITOSAN FOR COLLAGEN: THE EFFECT OF pH AND THE PRESENCE OF SODIUM AND CALCIUM CATIONS PREPARATION AND PHYSICOCHEMICAL CHARACTERISTICS OF AN IODINE AND BISMUTH CONTAINING COMPOSITE MATERIAL BASED ON CHITOSAN ON OBTAINING BINARY POLYELECTROLYTE COMPLEXES OF CHITOSAN BOMBYX MORI WITH COLLAGEN ADSORPTION OF SILVER IONS ON CHITOSAN HYDROGEL BEADS THE EFFECTS OF APPLYING CHITOSAN OF DIFFERENT MOLECULAR WEIGHTS ON THE GROWTH AND QUALITY OF KAMCHATKA BERRIES (LONICERA CAERULEA L.): PART 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1