{"title":"基于多元线性回归和人工神经网络的两种再分析产品在华南地区估计高塔风的适用性比较","authors":"Xiangxiang Li, X. Qin, Jun Yang, Weiming Xu","doi":"10.1155/2022/6573202","DOIUrl":null,"url":null,"abstract":"Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the Applicability of Two Reanalysis Products in Estimating Tall Tower Wind Based on Multiple Linear Regression and Artificial Neural Network in South China\",\"authors\":\"Xiangxiang Li, X. Qin, Jun Yang, Weiming Xu\",\"doi\":\"10.1155/2022/6573202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6573202\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/6573202","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Comparison of the Applicability of Two Reanalysis Products in Estimating Tall Tower Wind Based on Multiple Linear Regression and Artificial Neural Network in South China
Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.