基于多元线性回归和人工神经网络的两种再分析产品在华南地区估计高塔风的适用性比较

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Meteorology Pub Date : 2022-10-11 DOI:10.1155/2022/6573202
Xiangxiang Li, X. Qin, Jun Yang, Weiming Xu
{"title":"基于多元线性回归和人工神经网络的两种再分析产品在华南地区估计高塔风的适用性比较","authors":"Xiangxiang Li, X. Qin, Jun Yang, Weiming Xu","doi":"10.1155/2022/6573202","DOIUrl":null,"url":null,"abstract":"Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of the Applicability of Two Reanalysis Products in Estimating Tall Tower Wind Based on Multiple Linear Regression and Artificial Neural Network in South China\",\"authors\":\"Xiangxiang Li, X. Qin, Jun Yang, Weiming Xu\",\"doi\":\"10.1155/2022/6573202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6573202\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/6573202","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

气候再分析产品已被广泛用于克服风能用户缺乏高质量和长期观测记录的问题。在本研究中,评估了两个流行的再分析数据集(ERA5和MERRA2)在估计华南四个高塔天文台(TTO)风特征方面的适用性。对于每个TTO,分别采用线性和非线性降尺度技术,即多元线性回归(MLR)和人工神经网络(ANN)来降尺度标量风速和相应的U/V分量。随后,通过相关系数(Pearson’s r)、均方根误差(RMSE)、不确定性分析(U95)和可靠性分析(RE)将缩小后的风速和U/V分量与TTO观测值进行比较。根据结果,当同时使用MLR和ANN降尺度方法时,ERA5在估计TTO风速方面比MERRA2具有更好的适用性(较高的Pearson r和RE,但较低的RMSE和U95)。通过MLR(ANN)方法从ERA5降尺度风的平均Pearson’s r、RE、RMSE和U95分别为0.66(0.69)、40.8%(41.8%)、2.20 m/s(2.11 m/s),0.181 m/s(0.179 m/s)和0.60(0.63)、38.0%(39.7%)、2.32 m/s(2.25 m/s),0.189 m/s(0.187 m/s)。风分量分析表明,ERA5的性能更好是因为它在估计V分量方面的误差比MERRA2小。对于风向,两个再分析数据集没有显示出明显的差异。此外,次级主导风向(SPWD)的再分析产品和TTO之间的风向偏差高于主导风向(PWD)。此外,我们发现再分析U风比V风具有更高的RMSE,但RE和Pearson’s r更低,这表明风向的偏差主要与U分量的偏差有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of the Applicability of Two Reanalysis Products in Estimating Tall Tower Wind Based on Multiple Linear Regression and Artificial Neural Network in South China
Climate reanalysis products have been widely used to overcome the absence of high-quality and long-term observational records for wind energy users. In this study, the applicability of two popular reanalysis datasets (ERA5 and MERRA2) in estimating wind characteristics for four tall tower observatories (TTOs) in South China was assessed. For each TTO, linear and nonlinear downscaling techniques, namely, multiple linear regression (MLR) and an artificial neural network (ANN), respectively, were adopted for the downscaling of the scalar wind speed and the corresponding U/V components. The downscaled wind speed and U/V components were subsequently compared with the TTO observations by correlation coefficient (Pearson’s r), the root mean square error (RMSE), the uncertainty analysis (U95), and the reliability analysis (RE). According to the results, ERA5 had a better applicability (higher Pearson’s r and RE, but lower RMSE and U95) in estimating TTO wind speed than MERRA2 when using both the MLR and ANN downscaling method. The average Pearson’s r, RE, RMSE, and U95 of the downscaled wind from ERA5 by the MLR (ANN) method were 0.66 (0.69), 40.8% (41.8%), 2.20 m/s (2.11 m/s), 0.181 m/s (0.179 m/s), respectively, and 0.60 (0.63), 38.0% (39.7%), 2.32 m/s (2.25 m/s), 0.189 m/s (0.187 m/s), respectively, for MERRA2. The wind components analysis showed that the better performance of ERA5 was attributed to its smaller error in estimating V component than MERRA2. For the wind direction, the two reanalysis datasets did not display distinct differences. Additionally, the misalignment of the wind direction between the reanalysis products and the TTOs was higher for the secondary predominant wind direction (SPWD) than for the predominant wind direction (PWD). Furthermore, we found that the reanalysis U wind had a higher RMSE but a lower RE and Pearson’s r than the V wind, which indicates that the misalignment in the wind direction was mainly associated with the deviation in the U component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
期刊最新文献
Sensitivity of WRF-Simulated 2 m Temperature and Precipitation to Physics Options over the Loess Plateau Analysis of Urban Heat Island Effect in Wuhan Urban Area Based on Prediction of Urban Underlying Surface Coverage Type Change Temporal Dynamics and Trend Analysis of Areal Rainfall in Muger Subwatershed, Upper Blue Nile, Ethiopia Statistical Analysis for the Detection of Change Points and the Evaluation of Monthly Mean Temperature Trends of the Moulouya Basin (Morocco) Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1