{"title":"基于树莓皮的MEMS多功能非线性运动传感器网络","authors":"Natarajan Shriethar, Narmadha Chandramohan, Chandramohan Rathinam","doi":"10.15446/mo.n65.102641","DOIUrl":null,"url":null,"abstract":"Detecting and measuring the nonlinear evolution of a classical system is a complex process. In this work, the nonlinear evolution of a lab-level system is measured using the Raspberry Pi-based MEMS sensor network system. The evolution and various results of nonlinear systems were compared theoretical and experimentally.","PeriodicalId":42463,"journal":{"name":"MOMENTO-Revista de Fisica","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS\",\"authors\":\"Natarajan Shriethar, Narmadha Chandramohan, Chandramohan Rathinam\",\"doi\":\"10.15446/mo.n65.102641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting and measuring the nonlinear evolution of a classical system is a complex process. In this work, the nonlinear evolution of a lab-level system is measured using the Raspberry Pi-based MEMS sensor network system. The evolution and various results of nonlinear systems were compared theoretical and experimentally.\",\"PeriodicalId\":42463,\"journal\":{\"name\":\"MOMENTO-Revista de Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOMENTO-Revista de Fisica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/mo.n65.102641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOMENTO-Revista de Fisica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/mo.n65.102641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
RASPBERRY PI-BASED SENSOR NETWORK FOR MULTI-PURPOSE NONLINEAR MOTION DETECTION IN LABORATORIES USING MEMS
Detecting and measuring the nonlinear evolution of a classical system is a complex process. In this work, the nonlinear evolution of a lab-level system is measured using the Raspberry Pi-based MEMS sensor network system. The evolution and various results of nonlinear systems were compared theoretical and experimentally.