基于随机子空间与C4.5决策树学习方法相结合的浅层滑坡空间预测新方法

IF 2.4 Q2 GEOSCIENCES, MULTIDISCIPLINARY VIETNAM JOURNAL OF EARTH SCIENCES Pub Date : 2022-02-17 DOI:10.15625/2615-9783/16929
Viet-Ha Nhu, Tinh T. Bui, L. My, Hoe Vuong, Hoang Nhat Duc
{"title":"基于随机子空间与C4.5决策树学习方法相结合的浅层滑坡空间预测新方法","authors":"Viet-Ha Nhu, Tinh T. Bui, L. My, Hoe Vuong, Hoang Nhat Duc","doi":"10.15625/2615-9783/16929","DOIUrl":null,"url":null,"abstract":"The research approaches a new machine learning ensemble which is a hybridization of Random subspace (RS) and C4.5, named RandSub-DT, for improving the performance of the landslide susceptibility model. This is based on the GIS database, including 170 landslide polygons and ten predisposing landslide factors, i.e., slope, aspect, curvature, TWI, land use, distance to road, distance to the river, soil type, distance to fault, and lithology. We carried out this study in the Halong and Cam Pha City areas which are important economic centers in the Quang Ninh province, Vietnam, where landslides seriously influence the daily life of the citizen causing economic damage. We then used a GIS database to construct and validate the proposed RandSub-DT model. The model performance was assessed using a confusion matrix and a set of statistical measures. The result showed that the RandSub-DT model with the classification accuracy of 90.34% in the training dataset and the prediction capability of 77.48% had a high performance for landslide prediction. This research proved that an ensemble of the C4.5 and RS provided a highly accurate estimate of landslide susceptibility in the research area.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A new approach based on integration of random subspace and C4.5 decision tree learning method for spatial prediction of shallow landslides\",\"authors\":\"Viet-Ha Nhu, Tinh T. Bui, L. My, Hoe Vuong, Hoang Nhat Duc\",\"doi\":\"10.15625/2615-9783/16929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research approaches a new machine learning ensemble which is a hybridization of Random subspace (RS) and C4.5, named RandSub-DT, for improving the performance of the landslide susceptibility model. This is based on the GIS database, including 170 landslide polygons and ten predisposing landslide factors, i.e., slope, aspect, curvature, TWI, land use, distance to road, distance to the river, soil type, distance to fault, and lithology. We carried out this study in the Halong and Cam Pha City areas which are important economic centers in the Quang Ninh province, Vietnam, where landslides seriously influence the daily life of the citizen causing economic damage. We then used a GIS database to construct and validate the proposed RandSub-DT model. The model performance was assessed using a confusion matrix and a set of statistical measures. The result showed that the RandSub-DT model with the classification accuracy of 90.34% in the training dataset and the prediction capability of 77.48% had a high performance for landslide prediction. This research proved that an ensemble of the C4.5 and RS provided a highly accurate estimate of landslide susceptibility in the research area.\",\"PeriodicalId\":23639,\"journal\":{\"name\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VIETNAM JOURNAL OF EARTH SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/2615-9783/16929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2615-9783/16929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

为了提高滑坡敏感性模型的性能,该研究采用了一种新的机器学习集成,该集成是随机子空间(RS)和C4.5的杂交,称为RandSub-DT。这是基于GIS数据库,包括170个滑坡多边形和10个诱发滑坡因素,即坡度、坡向、曲率、TWI、土地利用、与道路的距离、与河流的距离、土壤类型、与断层的距离和岩性。我们在越南广宁省重要的经济中心下龙和金法市地区进行了这项研究,那里的山体滑坡严重影响了公民的日常生活,造成了经济损失。然后,我们使用GIS数据库构建并验证了提出的RandSub-DT模型。使用混淆矩阵和一组统计度量来评估模型的性能。结果表明,RandSub-DT模型在训练数据集中分类准确率为90.34%,预测能力为77.48%,具有较好的滑坡预测性能。本研究证明,C4.5和RS的集合能较准确地估计研究区滑坡易感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach based on integration of random subspace and C4.5 decision tree learning method for spatial prediction of shallow landslides
The research approaches a new machine learning ensemble which is a hybridization of Random subspace (RS) and C4.5, named RandSub-DT, for improving the performance of the landslide susceptibility model. This is based on the GIS database, including 170 landslide polygons and ten predisposing landslide factors, i.e., slope, aspect, curvature, TWI, land use, distance to road, distance to the river, soil type, distance to fault, and lithology. We carried out this study in the Halong and Cam Pha City areas which are important economic centers in the Quang Ninh province, Vietnam, where landslides seriously influence the daily life of the citizen causing economic damage. We then used a GIS database to construct and validate the proposed RandSub-DT model. The model performance was assessed using a confusion matrix and a set of statistical measures. The result showed that the RandSub-DT model with the classification accuracy of 90.34% in the training dataset and the prediction capability of 77.48% had a high performance for landslide prediction. This research proved that an ensemble of the C4.5 and RS provided a highly accurate estimate of landslide susceptibility in the research area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
VIETNAM JOURNAL OF EARTH SCIENCES
VIETNAM JOURNAL OF EARTH SCIENCES GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
20.00%
发文量
0
期刊最新文献
Effects of drought on enzyme activities and hotspot distribution along plant roots Geotechnical properties of natural sand-mixed granulated blast furnace slag applied to the sand compaction pile method Faecal contamination and its relationship with some environmental variables of four urban rivers in inner Hanoi city, Vietnam Prediction of hotspots pattern in Kalimantan using copula-based quantile regression and probabilistic model: a study of precipitation and dry spells across varied ENSO conditions Radiological risk assessment and characteristics of 210Po in selected water sources in Quang Nam and Da Nang, Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1