了解标准化SAE波形参数变化对人工闪电等离子体、试样加载和复合材料损伤的影响

IF 0.3 Q4 ENGINEERING, AEROSPACE SAE International Journal of Aerospace Pub Date : 2020-02-18 DOI:10.4271/01-13-01-0002
S. Millen, A. Murphy, G. Abdelal, G. Catalanotti
{"title":"了解标准化SAE波形参数变化对人工闪电等离子体、试样加载和复合材料损伤的影响","authors":"S. Millen, A. Murphy, G. Abdelal, G. Catalanotti","doi":"10.4271/01-13-01-0002","DOIUrl":null,"url":null,"abstract":"Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of ‘waveform peak’, ‘rise time’ and ‘time to reach the post-peak value’ have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein it has been found that ‘peak current’ is the key parameter influencing plasma properties and specimen damage. A 10% increase in peak current magnitude (and resulting 21% increase in action integral) results in a 12% increase in plasma peak pressure, a 5% increase in specimen surface current density, and subsequently a 8.7% increase in thermal damage volume and a 15.2% increase in thermal damage depth. Overall action integral has the strongest correlation with four of the five considered damage measures. Peak current has the strongest correlation with the other damage measure.","PeriodicalId":44558,"journal":{"name":"SAE International Journal of Aerospace","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage\",\"authors\":\"S. Millen, A. Murphy, G. Abdelal, G. Catalanotti\",\"doi\":\"10.4271/01-13-01-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of ‘waveform peak’, ‘rise time’ and ‘time to reach the post-peak value’ have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein it has been found that ‘peak current’ is the key parameter influencing plasma properties and specimen damage. A 10% increase in peak current magnitude (and resulting 21% increase in action integral) results in a 12% increase in plasma peak pressure, a 5% increase in specimen surface current density, and subsequently a 8.7% increase in thermal damage volume and a 15.2% increase in thermal damage depth. Overall action integral has the strongest correlation with four of the five considered damage measures. Peak current has the strongest correlation with the other damage measure.\",\"PeriodicalId\":44558,\"journal\":{\"name\":\"SAE International Journal of Aerospace\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE International Journal of Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/01-13-01-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/01-13-01-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 5

摘要

以往的工作已经建立了具有特定波形参数的人工试验闪电等离子体模型,并使用预测的等离子体行为来估计试件损伤的策略。到目前为止,还没有计算工作量化改变波形参数对预测等离子体行为和导致试样损伤的影响。本文对测试标准波形B进行了建模,并改变了“波形峰值”、“上升时间”和“到达峰后值时间”的波形参数。等离子体和试样的行为使用有限元方法(等离子体的磁流体动力学有限元多物理场模型,试样的有限元热电模型)进行了建模。对于本文模拟的试验布置,发现“峰值电流”是影响等离子体性能和试件损伤的关键参数。峰值电流增加10%(导致作用积分增加21%)导致等离子体峰值压力增加12%,试样表面电流密度增加5%,随后热损伤体积增加8.7%,热损伤深度增加15.2%。总体行动积分与五种考虑的损害措施中的四种具有最强的相关性。峰值电流与其他损伤指标的相关性最强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage
Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of ‘waveform peak’, ‘rise time’ and ‘time to reach the post-peak value’ have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein it has been found that ‘peak current’ is the key parameter influencing plasma properties and specimen damage. A 10% increase in peak current magnitude (and resulting 21% increase in action integral) results in a 12% increase in plasma peak pressure, a 5% increase in specimen surface current density, and subsequently a 8.7% increase in thermal damage volume and a 15.2% increase in thermal damage depth. Overall action integral has the strongest correlation with four of the five considered damage measures. Peak current has the strongest correlation with the other damage measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAE International Journal of Aerospace
SAE International Journal of Aerospace ENGINEERING, AEROSPACE-
CiteScore
0.70
自引率
0.00%
发文量
22
期刊最新文献
Computational Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing Material Recognition Technology of Internal Loose Particles in Sealed Electronic Components Based on Random Forest External Synchronization of Distributed Redundant Flight Control Computers Reviewers Determination of the Heat-Controlled Accumulator Volume for the Two-Phase Thermal Control Systems of Spacecraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1