{"title":"聚丙烯- Zno-TiO2核壳纳米颗粒复合材料的介电性能","authors":"R. Sampathkumar, A. Aswathy, V. Balachandar","doi":"10.18311/JSST/2018/20118","DOIUrl":null,"url":null,"abstract":"Composites of polypropylene with different weight percentages of ZnO-TiO 2 core-shell nanoparticles were prepared by the combination of solution and mixture melting methods. Dielectric properties of polypropylene composite films were studied at frequencies ranging from 50 Hz to 5 MHz at four different temperatures (313, 333, 353, and 373 K). It is observed that the dielectric constant reduces quickly in the low-frequency range followed by a near frequency independent behavior above 1 KHz. The dielectric properties of composites at low frequency can be explained by interfacial polarization or Maxwell-Wagner-Sillars effect. It is also observed that the dielectric constant reaches the maximum value at 3 wt% of ZnO-TiO 2 , which is the percolation threshold of nanocomposite. As the weight percentage of ZnO-TiO 2 increases beyond the percolation threshold up to 7%, the dielectric constant of the nanocomposites decreases. The dielectric loss of the composites follows the similar trend with frequency as the dielectric constant. A sharp increase in the dielectric loss of the nanocomposite observed near the percolation threshold is due to leakage current produced by the formation of conductive network by ZnO-TiO 2 core-shell nanoparticles. Further, peaks in the loss tangent observed for the nanocomposite systems indicating the appearance of a relaxation process. These relaxations peaks were shifted to higher frequencies as the particle content increased, since relaxation processes were influenced by the interfacial polarization effect which generated electric charge accumulation around the ZnO-TiO 2 core-shell nanoparticles.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dielectric Properties of Composites of Polypropylene with Zno-TiO2 Core-Shell Nanoparticles\",\"authors\":\"R. Sampathkumar, A. Aswathy, V. Balachandar\",\"doi\":\"10.18311/JSST/2018/20118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composites of polypropylene with different weight percentages of ZnO-TiO 2 core-shell nanoparticles were prepared by the combination of solution and mixture melting methods. Dielectric properties of polypropylene composite films were studied at frequencies ranging from 50 Hz to 5 MHz at four different temperatures (313, 333, 353, and 373 K). It is observed that the dielectric constant reduces quickly in the low-frequency range followed by a near frequency independent behavior above 1 KHz. The dielectric properties of composites at low frequency can be explained by interfacial polarization or Maxwell-Wagner-Sillars effect. It is also observed that the dielectric constant reaches the maximum value at 3 wt% of ZnO-TiO 2 , which is the percolation threshold of nanocomposite. As the weight percentage of ZnO-TiO 2 increases beyond the percolation threshold up to 7%, the dielectric constant of the nanocomposites decreases. The dielectric loss of the composites follows the similar trend with frequency as the dielectric constant. A sharp increase in the dielectric loss of the nanocomposite observed near the percolation threshold is due to leakage current produced by the formation of conductive network by ZnO-TiO 2 core-shell nanoparticles. Further, peaks in the loss tangent observed for the nanocomposite systems indicating the appearance of a relaxation process. These relaxations peaks were shifted to higher frequencies as the particle content increased, since relaxation processes were influenced by the interfacial polarization effect which generated electric charge accumulation around the ZnO-TiO 2 core-shell nanoparticles.\",\"PeriodicalId\":17031,\"journal\":{\"name\":\"Journal of Surface Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JSST/2018/20118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2018/20118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Dielectric Properties of Composites of Polypropylene with Zno-TiO2 Core-Shell Nanoparticles
Composites of polypropylene with different weight percentages of ZnO-TiO 2 core-shell nanoparticles were prepared by the combination of solution and mixture melting methods. Dielectric properties of polypropylene composite films were studied at frequencies ranging from 50 Hz to 5 MHz at four different temperatures (313, 333, 353, and 373 K). It is observed that the dielectric constant reduces quickly in the low-frequency range followed by a near frequency independent behavior above 1 KHz. The dielectric properties of composites at low frequency can be explained by interfacial polarization or Maxwell-Wagner-Sillars effect. It is also observed that the dielectric constant reaches the maximum value at 3 wt% of ZnO-TiO 2 , which is the percolation threshold of nanocomposite. As the weight percentage of ZnO-TiO 2 increases beyond the percolation threshold up to 7%, the dielectric constant of the nanocomposites decreases. The dielectric loss of the composites follows the similar trend with frequency as the dielectric constant. A sharp increase in the dielectric loss of the nanocomposite observed near the percolation threshold is due to leakage current produced by the formation of conductive network by ZnO-TiO 2 core-shell nanoparticles. Further, peaks in the loss tangent observed for the nanocomposite systems indicating the appearance of a relaxation process. These relaxations peaks were shifted to higher frequencies as the particle content increased, since relaxation processes were influenced by the interfacial polarization effect which generated electric charge accumulation around the ZnO-TiO 2 core-shell nanoparticles.
期刊介绍:
The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction