贡献图:RV系数的分解和图形显示,应用于阿尔茨海默病的遗传和脑成像生物标志物

IF 1.1 4区 生物学 Q4 GENETICS & HEREDITY Human Heredity Pub Date : 2019-01-01 Epub Date: 2019-08-20 DOI:10.1159/000501334
JinCheol Choi, Donghuan Lu, Mirza Faisal Beg, Jinko Graham, Brad McNeney
{"title":"贡献图:RV系数的分解和图形显示,应用于阿尔茨海默病的遗传和脑成像生物标志物","authors":"JinCheol Choi, Donghuan Lu, Mirza Faisal Beg, Jinko Graham, Brad McNeney","doi":"10.1159/000501334","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes memory loss and a decline in cognitive abilities. AD is the sixth leading cause of death in the USA, affecting an estimated 5 million Americans. To assess the association between multiple genetic variants and multiple measurements of structural changes in the brain, a recent study of AD used a multivariate measure of linear dependence, the RV coefficient. The authors decomposed the RV coefficient into contributions from individual variants and displayed these contributions graphically.</p><p><strong>Methods: </strong>We investigate the properties of such a \"contribution plot\" in terms of an underlying linear model, and discuss shrinkage estimation of the components of the plot when the correlation signal may be sparse.</p><p><strong>Results: </strong>The contribution plot is applied to simulated data and to genomic and brain imaging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).</p><p><strong>Conclusions: </strong>The contribution plot with shrinkage estimation can reveal truly associated explanatory variables.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008771/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Contribution Plot: Decomposition and Graphical Display of the RV Coefficient, with Application to Genetic and Brain Imaging Biomarkers of Alzheimer's Disease.\",\"authors\":\"JinCheol Choi, Donghuan Lu, Mirza Faisal Beg, Jinko Graham, Brad McNeney\",\"doi\":\"10.1159/000501334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes memory loss and a decline in cognitive abilities. AD is the sixth leading cause of death in the USA, affecting an estimated 5 million Americans. To assess the association between multiple genetic variants and multiple measurements of structural changes in the brain, a recent study of AD used a multivariate measure of linear dependence, the RV coefficient. The authors decomposed the RV coefficient into contributions from individual variants and displayed these contributions graphically.</p><p><strong>Methods: </strong>We investigate the properties of such a \\\"contribution plot\\\" in terms of an underlying linear model, and discuss shrinkage estimation of the components of the plot when the correlation signal may be sparse.</p><p><strong>Results: </strong>The contribution plot is applied to simulated data and to genomic and brain imaging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).</p><p><strong>Conclusions: </strong>The contribution plot with shrinkage estimation can reveal truly associated explanatory variables.</p>\",\"PeriodicalId\":13226,\"journal\":{\"name\":\"Human Heredity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008771/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000501334\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000501334","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:阿尔茨海默病(AD)是一种导致记忆丧失和认知能力下降的慢性神经退行性疾病。AD是美国第六大死亡原因,估计有500万美国人受到影响。为了评估多种遗传变异与大脑结构变化的多种测量之间的相关性,最近的一项AD研究使用了线性依赖性的多变量测量,即RV系数。作者将RV系数分解为各个变量的贡献,并以图形方式显示这些贡献。方法:我们根据潜在的线性模型研究了这种“贡献图”的性质,并讨论了当相关信号可能是稀疏的时,图的分量的收缩估计。结果:贡献图应用于阿尔茨海默病神经成像倡议(ADNI)的模拟数据以及基因组和大脑成像数据。结论:收缩估计的贡献图可以揭示真正相关的解释变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Contribution Plot: Decomposition and Graphical Display of the RV Coefficient, with Application to Genetic and Brain Imaging Biomarkers of Alzheimer's Disease.

Background/aims: Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes memory loss and a decline in cognitive abilities. AD is the sixth leading cause of death in the USA, affecting an estimated 5 million Americans. To assess the association between multiple genetic variants and multiple measurements of structural changes in the brain, a recent study of AD used a multivariate measure of linear dependence, the RV coefficient. The authors decomposed the RV coefficient into contributions from individual variants and displayed these contributions graphically.

Methods: We investigate the properties of such a "contribution plot" in terms of an underlying linear model, and discuss shrinkage estimation of the components of the plot when the correlation signal may be sparse.

Results: The contribution plot is applied to simulated data and to genomic and brain imaging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).

Conclusions: The contribution plot with shrinkage estimation can reveal truly associated explanatory variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Heredity
Human Heredity 生物-遗传学
CiteScore
2.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.
期刊最新文献
Place of concordance-discordance model in evaluating NGS performance. Implications of the Co-Dominance Model for Hardy-Weinberg Testing in Genetic Association Studies. Joint Linkage and Association Analysis Using GENEHUNTER-MODSCORE with an Application to Familial Pancreatic Cancer. Investigation of Recessive Effects of Coding Variants on Common Clinical Phenotypes in Exome-Sequenced UK Biobank Participants. comorbidPGS: An R Package Assessing Shared Predisposition between Phenotypes Using Polygenic Scores.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1