{"title":"对奥氏体不锈钢焊缝进行数字射线照相时斑点迹象的评估","authors":"Albert Wenzig","doi":"10.32548/10.32548/2022.me-800122_2","DOIUrl":null,"url":null,"abstract":"When radiographing an austenitic stainless steel weld with an appreciable weld deposit size, selecting a low radiographic kilovoltage (keV) can contribute to producing a radiographic indication that is not an imperfection. The contributors to this mottled condition are both radiographical and metallurgical. Electrons from low keV can diffract or absorb when penetrating through the dendritic grain structure of a weld. The increase in keV, or using gamma ray–equivalent isotopes, produces a marked change in electron output and penetration in material.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Mottled Indications when Digitally Radiographing Austenitic Stainless Steel Welds\",\"authors\":\"Albert Wenzig\",\"doi\":\"10.32548/10.32548/2022.me-800122_2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When radiographing an austenitic stainless steel weld with an appreciable weld deposit size, selecting a low radiographic kilovoltage (keV) can contribute to producing a radiographic indication that is not an imperfection. The contributors to this mottled condition are both radiographical and metallurgical. Electrons from low keV can diffract or absorb when penetrating through the dendritic grain structure of a weld. The increase in keV, or using gamma ray–equivalent isotopes, produces a marked change in electron output and penetration in material.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/10.32548/2022.me-800122_2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/10.32548/2022.me-800122_2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Assessing Mottled Indications when Digitally Radiographing Austenitic Stainless Steel Welds
When radiographing an austenitic stainless steel weld with an appreciable weld deposit size, selecting a low radiographic kilovoltage (keV) can contribute to producing a radiographic indication that is not an imperfection. The contributors to this mottled condition are both radiographical and metallurgical. Electrons from low keV can diffract or absorb when penetrating through the dendritic grain structure of a weld. The increase in keV, or using gamma ray–equivalent isotopes, produces a marked change in electron output and penetration in material.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.